Modelling CO2 and N2O emissions from soils in silvopastoral systems of the West African Sahelian band

Author:

Agbohessou YélognissèORCID,Delon Claire,Grippa Manuela,Mougin Eric,Ngom Daouda,Gaglo Espoir Koudjo,Ndiaye Ousmane,Salgado PauloORCID,Roupsard OlivierORCID

Abstract

Abstract. Silvopastoral systems (SPSs) have been shown to improve ecosystem resilience and provide sustainable land management solutions in the Sahel. However, accurately estimating the contribution of Sahelian ecosystems to the overall greenhouse gas (GHG) balance is a challenge, in particular regarding the magnitude of carbon dioxide (CO2) and nitrous oxide (N2O) emissions from soils. In this work, we spatialized and applied the process-based model Sahelian Transpiration Evaporation and Productivity – GENeral model of litter DEComposition – N2O (STEP–GENDEC-N2O) to investigate the magnitude and spatial and temporal patterns of herbaceous mass, as well as CO2 and N2O emissions from soil (not net emissions) in Sahelian SPSs. Our results show that over the last decade (2012–2022), there was a heterogeneous spatial distribution of herbaceous mass production and of soil CO2 and N2O emissions in Sahelian SPSs. Spatial variations in soil CO2 emissions are primarily controlled by soil carbon content, temperature, herbaceous mass, and animal load, while soil nitrogen content, soil water content, and animal load are the main factors driving the spatial variations in N2O emissions from soil. The estimated CO2 and N2O emissions from soil in Sahelian SPSs over the 2012–2022 period were equal to 58.79 ± 4.83 Tg CO2-C yr−1 (1 Tg = 1012 g) and 21.59 ± 3.91 Gg N2O-N yr−1 (1 Gg = 109 g), respectively. These values are generally lower than estimates reported in the literature for tropical areas and croplands. Furthermore, our simulations indicated a significant annual rising trend of soil CO2 and N2O emissions between 2012 and 2020 as herbaceous mass increased, making more C and N available for the nitrification, denitrification, and decomposition processes. By mapping soil CO2 and N2O emissions, we provide crucial insights into the localization of emission hotspots in Sahelian SPSs, thereby offering valuable information that can be used to devise and implement effective strategies aimed at fostering carbon sequestration in the Sahel.

Funder

Horizon 2020

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3