Effects of environmental factors on the influence of tillage conversion on saturated soil hydraulic conductivity obtained with different methodologies: a global meta-analysis

Author:

Liao Kaihua,Feng Juan,Lai Xiaoming,Zhu Qing

Abstract

Abstract. The saturated hydraulic conductivity (Ksat) is a key soil hydraulic property governing agricultural production. However, the influence of the conversion from the conventional tillage (CT) to conservation tillage (CS; including no tillage, NT, and reduced tillage, RT) on the Ksat of soils is not well understood and still debated. In this study, we applied a global meta-analysis method to synthesize 227 paired observations for soil Ksat from 69 published studies and investigated factors influencing the effects of conversion to CS on Ksat. Results showed that soil layer, conservation tillage type, soil texture type, and cropping system management did not have significant effects on the influence of conversion to CS on Ksat. When the Ksat was measured by the rainfall simulator, the conversion to CS significantly (p<0.05) increased the surface and subsurface soil Ksat by 41.7 % and 36.9 %, respectively. In addition, the subsurface Ksat also tended to increase under CS practices when the Ksat was measured by a tension disc infiltrometer. However, when the Ksat was measured by a hood infiltrometer, ring infiltrometer, constant/falling head, and Guelph permeameter, the conversion to CS had no significant effects on the Ksat. It is observed that, when the conversion period was less than 15 years, the Ksat under CS showed a greater increase for a longer conversion period. Climatic and topographic factors, including the mean annual temperature (MAT) and the mean annual precipitation (MAP), were statistically related to the responses of Ksat to tillage conversion at the global scale. Quadratic polynomials can describe the relationships between them. These findings suggested that quantifying the effects of tillage conversion on soil Ksat needed to consider experimental conditions, especially the measurement technique and conversion period.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Copernicus GmbH

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3