Detecting layer height of smoke aerosols over vegetated land and water surfaces via oxygen absorption bands: hourly results from EPIC/DSCOVR in deep space

Author:

Xu XiaoguangORCID,Wang JunORCID,Wang Yi,Zeng Jing,Torres Omar,Reid Jeffrey S.,Miller Steven D.,Martins J. Vanderlei,Remer Lorraine A.

Abstract

Abstract. We present an algorithm for retrieving aerosol layer height (ALH) and aerosol optical depth (AOD) for smoke over vegetated land and water surfaces from measurements of the Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR). The algorithm uses Earth-reflected radiances in six EPIC bands in the visible and near-infrared and incorporates flexible spectral fitting that accounts for the specifics of land and water surface reflectivity. The fitting procedure first determines AOD using EPIC atmospheric window bands (443, 551, 680, and 780 nm), then uses oxygen (O2) A and B bands (688 and 764 nm) to derive ALH, which represents an optical centroid altitude. ALH retrieval over vegetated surface primarily takes advantage of measurements in the O2 B band. We applied the algorithm to EPIC observations of several biomass burning events over the United States and Canada in August 2017. We found that the algorithm can be used to obtain AOD and ALH multiple times daily over water and vegetated land surface. Validation is performed against aerosol extinction profiles detected by the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) and against AOD observed at nine Aerosol Robotic Network (AERONET) sites, showing, on average, an error of 0.58 km and a bias of −0.13 km in retrieved ALH and an error of 0.05 and a bias of 0.03 in retrieved AOD. Additionally, we show that the aerosol height information retrieved by the present algorithm can potentially benefit the retrieval of aerosol properties from EPIC's ultraviolet (UV) bands.

Funder

Office of Naval Research

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3