Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set

Author:

Buchwitz M.,de Beek R.,Noël S.,Burrows J. P.,Bovensmann H.,Bremer H.,Bergamaschi P.,Körner S.,Heimann M.

Abstract

Abstract. The near-infrared nadir spectra measured by SCIAMACHY on-board ENVISAT contain information on the vertical columns of important atmospheric trace gases such as carbon monoxide (CO), methane (CH4), and carbon dioxide (CO2). The scientific algorithm WFM-DOAS has been used to retrieve this information. For CH4 and CO2 also column averaged mixing ratios (XCH4 and XCO2) have been determined by simultaneous measurements of the dry air mass. All available spectra of the year 2003 have been processed. We describe the algorithm versions used to generate the data (v0.4; for methane also v0.41) and show comparisons of monthly averaged data over land with global measurements (CO from MOPITT) and models (for CH4 and CO2). We show that elevated concentrations of CO resulting from biomass burning have been detected in reasonable agreement with MOPITT. The measured XCH4 is enhanced over India, south-east Asia, and central Africa in September/October 2003 in line with model simulations, where they result from surface sources of methane such as rice fields and wetlands. The CO2 measurements over the Northern Hemisphere show the lowest mixing ratios around July in qualitative agreement with model simulations indicating that the large scale pattern of CO2 uptake by the growing vegetation can be detected with SCIAMACHY. We also identified potential problems such as a too low inter-hemispheric gradient for CO, a time dependent bias of the methane columns on the order of a few percent, and a few percent too high CO2 over parts of the Sahara.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3