Revealing the sources and sinks of negative cluster ions in an urban environment through quantitative analysis

Author:

Yin Rujing,Li XiaoxiaoORCID,Yan ChaoORCID,Cai Runlong,Zhou Ying,Kangasluoma JuhaORCID,Sarnela Nina,Lampilahti Janne,Petäjä TuukkaORCID,Kerminen Veli-MattiORCID,Bianchi FedericoORCID,Kulmala MarkkuORCID,Jiang Jingkun

Abstract

Abstract. Atmospheric cluster ions are important constituents in the atmosphere, and their concentrations and compositions govern their role in atmospheric chemistry. However, there is currently limited quantitative research on atmospheric ion compositions, sources, and sinks, especially in the urban atmosphere where pollution levels and human populations are intense. In this study, we measured the compositions of negative cluster ions and neutral molecules using an atmospheric pressure interface high-resolution time-of-flight mass spectrometer (APi-TOF) and a chemical ionization mass spectrometer in urban Beijing. Quantitative analysis of cluster ions was performed by their comparison with condensation sink (CS), reagent ions, and neutral molecules. We demonstrate the feasibility of quantifying cluster ions with different compositions using in situ-measured ion mobility distributions from a neutral cluster and air ion spectrometer (NAIS). The median concentration of negative cluster ions was 85 (61–112 for 25 %–75 %) cm−3 during the measurement period, which was negatively correlated with CS. The negative cluster ions mainly consisted of inorganic nitrogen-containing ions, inorganic sulfur-containing ions, and organic ions in the form of adducts with NO3- or HSO4-. The CHON-related organic ions accounted for over 70 % of the total organic ions. Although the molecules clustered with NO3- and HSO4- had similar compositions, we found that HSO4- clustered more efficiently with CHO and CHONnonNPs species (CHON excluding nitrated phenols), while NO3- clustered more efficiently with nitrated phenols (CHONNPs). Additionally, most organic ions were positively correlated with neutral molecules, resulting in similar diurnal cycles of organic ions and neutral molecules. However, an exception was found for CHONNPs, the concentration of which is also significantly influenced by the reagent ions NO3-. The charge fractions are generally higher for molecules with higher molecular weight and a higher oxidation state, and the opposite diurnal variations in charging fractions between H2SO4 and organic species indicate a charging competition between them. Finally, we choose HSO4- and C3H3O4- as representatives to calculate the contribution of different formation and loss pathways. We found their losses are condensational loss onto aerosol particles (73 %–75 %), ion–molecule reaction losses (19 %), and ion–ion recombination losses (6 %–8 %).

Funder

National Natural Science Foundation of China

Academy of Finland

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3