Vertical profiles of volatile organic compounds and fine particles in atmospheric air by using an aerial drone with miniaturized samplers and portable devices
-
Published:2023-05-30
Issue:10
Volume:23
Page:5885-5904
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Pusfitasari Eka Dian, Ruiz-Jimenez JoseORCID, Tiusanen Aleksi, Suuronen Markus, Haataja Jesse, Wu Yusheng, Kangasluoma JuhaORCID, Luoma KristaORCID, Petäjä TuukkaORCID, Jussila Matti, Hartonen KariORCID, Riekkola Marja-Liisa
Abstract
Abstract. The increase in volatile organic compound (VOC) emissions
released into the atmosphere is one of the main threats to human health and
climate. VOCs can adversely affect human life through their contribution to
air pollution directly and indirectly by reacting via several mechanisms in
the air to form secondary organic aerosols. In this study, an aerial drone
equipped with miniaturized air-sampling systems including up to four
solid-phase microextraction (SPME) Arrows and four in-tube extraction (ITEX)
samplers for the collection of VOCs, along with portable devices for the
real-time measurement of black carbon (BC) and total particle numbers at
high altitudes was exploited. In total, 135 air samples were collected under
optimal sampling conditions from 4 to 14 October 2021 at the boreal
forest SMEAR II station, Finland. A total of 48 different VOCs, including
nitrogen-containing compounds, alcohols, aldehydes, ketones, organic acids,
and hydrocarbons, were detected at different altitudes from 50 to 400 m
above ground level with concentrations of up to 6898 ng m−3 in the gas
phase and 8613 ng m−3 in the particle phase. Clear differences in VOC
distributions were seen in samples collected from different altitudes,
depending on the VOC sources. It was also possible to collect aerosol
particles by the filter accessory attached on the ITEX sampling system, and
five dicarboxylic acids were quantified with concentrations of 0.43 to
10.9 µg m−3. BC and total particle number measurements
provided similar diurnal patterns, indicating their correlation. For spatial
distribution, BC concentrations were increased at higher altitudes, being
2278 ng m−3 at 100 m and 3909 ng m−3 at 400 m. The measurements
aboard the drone provided insights into horizontal and vertical variability
in BC and aerosol number concentrations above the boreal forest.
Funder
Jane ja Aatos Erkon Säätiö Academy of Finland
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference96 articles.
1. Ahlberg, E., Falk, J., Eriksson, A., Holst, T., Brune, W. H., Kristensson,
A., Roldin, P., and Svenningsson, B.: Secondary organic aerosol from VOC
mixtures in an oxidation flow reactor, Atmos. Environ., 161, 210–220,
https://doi.org/10.1016/j.atmosenv.2017.05.005, 2017. 2. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim<span id="page5900"/>, A.,
Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,
Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,
A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen,
T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A.,
Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M.,
Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,
Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F.,
Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D.,
Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M.,
Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J.,
Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A.,
Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P.,
Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U.,
Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding
of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502,
359–363, https://doi.org/10.1038/nature12663, 2013. 3. Altshuller, A. P.: Production of aldehydes as primary emissions and from
secondary atmospheric reactions of alkenes and alkanes during the night and
early morning hours, Atmos. Environ. A-Gen., 27, 21–32,
https://doi.org/10.1016/0960-1686(93)90067-9, 1993. 4. Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G.,
Klimont, Z., Janssens-Maenhout, G., Pozzoli, L., van Dingenen, R., Vignati,
E., Emberson, L., Muller, N. Z., Jason West, J., Williams, M., Demkine, V.,
Kevin Hicks, W., Kuylenstierna, J., Raes, F., and Ramanathan, V.: Global air
quality and health co-benefits of mitigating near-term climate change
through methane and black carbon emission controls, Environ. Health
Persp., 120, 831–839, https://doi.org/10.1289/ehp.1104301, 2012. 5. Asbach, C., Schmitz, A., Schmidt, F., Monz, C., and Todea, A. M.:
Intercomparison of a personal CPC and different conventional CPCs, Aerosol
Air Qual. Res., 17, 1132–1141, https://doi.org/10.4209/aaqr.2016.10.0460,
2017.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|