Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling
-
Published:2017-12-08
Issue:12
Volume:21
Page:6201-6217
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Beck Hylke E.ORCID, Vergopolan NoemiORCID, Pan MingORCID, Levizzani VincenzoORCID, van Dijk Albert I. J. M.ORCID, Weedon Graham P.ORCID, Brocca LucaORCID, Pappenberger FlorianORCID, Huffman George J.ORCID, Wood Eric F.ORCID
Abstract
Abstract. We undertook a comprehensive evaluation of 22 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the HBV conceptual model against streamflow records for each of 9053 small to medium-sized ( < 50 000 km2) catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR) and the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7) or near-surface soil moisture (SM2RAIN-ASCAT), and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS). Two of the three reanalyses (ERA-Interim and JRA-55) unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified, and MSWEP V1.2 and V2.0) generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU), which in turn outperformed the one indirectly incorporating gauge data through another multi-source dataset (PERSIANN-CDR V1R1). Our results highlight large differences in estimation accuracy, and hence the importance of P dataset selection in both research and operational applications. The good performance of MSWEP emphasizes that careful data merging can exploit the complementary strengths of gauge-, satellite-, and reanalysis-based P estimates.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference133 articles.
1. Adler, R. F., Kidd, C., Petty, G., Morissey, M., and Goodman, H. M.: Intercomparison of global precipitation products: The third precipitation intercomparison project (PIP-3), B. Am. Meteorol. Soc., 82, 1377–1396, 2001. 2. AghaKouchak, A., Behrangi, A., Sorooshian, S., Hsu, K., and Amitai, E.: Evaluation of satellite-retrieved extreme precipitation rates across the central United States, J. Geophys. Res., 116, D02115, https://doi.org/10.1029/2010JD014741, 2011. 3. Akinremi, O. O., McGinn, S. M., and Cutforth, H. W.: Precipitation trends on the Canadian prairies, J. Climate, 12, 2996–3003, 1999. 4. Albergel, C., Dorigo, W., Reichle, R. H., Balsamo, G., de Rosnay, P., Muñoz Sabater, J. M., Isaksen, L., de Jeu, R., and Wagner, W.: Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing, J. Hydrometeorol., 14, 1259–1277, 2013. 5. Alijanian, M., Rakhshandehroo, G. R., Mishra, A. K., and Dehghani, M.: Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran, Int. J. Climatol., 37, 4896–4914, 2017.
Cited by
587 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|