Radiative impact of improved global parameterisations of oceanic dry deposition of ozone and lightning-generated NOx
-
Published:2022-10-11
Issue:19
Volume:22
Page:13013-13033
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Luhar Ashok K.ORCID, Galbally Ian E.ORCID, Woodhouse Matthew T.ORCID
Abstract
Abstract. We investigated the radiative impact of recent process-based improvements to oceanic ozone (O3) dry deposition parameterisation and empirical improvements to lightning-generated oxides of nitrogen (LNOx) parameterisation by conducting a 5-year simulation of the Australian Community Climate and Earth System Simulator – United Kingdom Chemistry and Aerosol (ACCESS-UKCA) global chemistry–climate model, with radiative effects of O3, methane (CH4) and aerosol included. Compared to the base parameterisations, the global consequences of the two
improved parameterisations on atmospheric composition are dominated by the
LNOx change (which increases the LNOx production from 4.8 to 6.9 Tg N yr−1) and include (a) an increase in the O3 column of 3.75 DU, and this O3 change is centred on the tropical upper troposphere where O3 is most effective as a radiative forcer; (b) a decrease of 0.64 years in the atmospheric lifetime of CH4 due to an increase in hydroxyl radical, which corresponds to a decrease of 0.31 years in the CH4 lifetime per Tg N yr−1 change in LNOx; (c) an increase of 6.7 % in the column integrated condensation nuclei concentration; and (d) a slight increase in high-level cloud cover. The two combined parameterisation changes cause an increase of 86.3 mW m−2 in the globally-averaged all-sky net downward top-of-atmosphere (TOA) radiative flux (which is akin to instantaneous radiative forcing), and only 5 % of which is due to the dry deposition parameterisation change. Other global radiative changes from the use of the two parameterisations together include an increase in the downward longwave radiation and a decrease in the downward shortwave radiation at the earth's surface. The indirect effect of LNOx on aerosol and cloud cover can at least partly explain the differences in the downward shortwave flux at the surface. It is demonstrated that although the total global LNOx production may be the same, how LNOx is distributed spatially makes a difference to radiative transfer. We estimate that for a reported uncertainty range of 5±3 Tg N yr−1 in global estimates of LNOx, the uncertainty in the net
downward TOA radiation is ±119 mW m−2. The corresponding
uncertainly in the atmospheric methane lifetime is ±0.92 years. Thus,
the value of LNOx used within a model will influence the effective radiative forcing (ERF) and global warming potential (GWP) of anthropogenic CH4, and influence the results of climate scenario modelling.
Funder
Commonwealth Scientific and Industrial Research Organisation Department of Agriculture, Water and the Environment
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference65 articles.
1. Abraham, N. L., Archibald, A. T., Bellouin, N., Boucher, O., Braesicke, P.,
Bushell, A., Carslaw, K. S., Collins, W., Dalvi, M., Emmerson, K. M.,
Folberth, G., Haywood, J., Johnson, C., Kipling, Z., Macintyre, H., Mann, G.
W., Telford, P. J., Merikanto, J., Morgenstern, O., O'Connor, F., Ordonez,
C., Osprey, S., Pringle, K. J., Pyle, J. A., Rae, J. G. L., Reddington, C.
L., Savage, D., Spracklen, D., Stier, P., and West, R.: Unified Model
Documentation Paper No. 84, United Kingdom Chemistry and Aerosol (UKCA) Technical Description MetUM Version 8.4, UK Met Office, Exeter, UK, 74 pp., http://www.ukca.ac.uk/images/b/b1/Umdp_084-umdp84.pdf (last access: 7 October 2022), 2012. 2. Archibald, A. T., O'Connor, F. M., Abraham, N. L., Archer-Nicholls, S., Chipperfield, M. P., Dalvi, M., Folberth, G. A., Dennison, F., Dhomse, S. S., Griffiths, P. T., Hardacre, C., Hewitt, A. J., Hill, R. S., Johnson, C. E., Keeble, J., Köhler, M. O., Morgenstern, O., Mulcahy, J. P., Ordóñez, C., Pope, R. J., Rumbold, S. T., Russo, M. R., Savage, N. H., Sellar, A., Stringer, M., Turnock, S. T., Wild, O., and Zeng, G.: Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1, Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, 2020. 3. Barten, J. G. M., Ganzeveld, L. N., Steeneveld, G.-J., and Krol, M. C.: Role
of oceanic ozone deposition in explaining temporal variability in surface
ozone at High Arctic sites, Atmos. Chem. Phys., 21, 10229–10248, https://doi.org/10.5194/acp-21-10229-2021, 2021. 4. Bellouin, N., Mann, G. W., Woodhouse, M. T., Johnson, C., Carslaw, K. S., and Dalvi, M.: Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model, Atmos. Chem. Phys., 13, 3027–3044, https://doi.org/10.5194/acp-13-3027-2013, 2013. 5. Bi, D. H., Dix, M., Marsland, S. J., O'Farrell, S., Rashid, H. A., Uotila,
P., Hirst, A. C., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H. L.,
Hannah, N., Franklin, C., Sun, Z. A., Vohralik, P., Watterson, I., Zhou, X.
B., Fiedler, R., Collier, M., Ma, Y. M., Noonan, J., Stevens, L., Uhe, P.,
Zhu, H. Y., Griffies, S. M., Hill, R., Harris, C., and Puri, K.: The ACCESS
coupled model: description, control climate and evaluation, Aust. Meteorol. Oceanogr. J., 63, 41–64, https://doi.org/10.22499/2.6301.004, 2013.
|
|