Seasonal variation in oxygenated organic molecules in urban Beijing and their contribution to secondary organic aerosol
-
Published:2022-08-05
Issue:15
Volume:22
Page:10077-10097
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Guo Yishuo, Yan Chao, Liu YuliangORCID, Qiao Xiaohui, Zheng Feixue, Zhang Ying, Zhou Ying, Li Chang, Fan Xiaolong, Lin Zhuohui, Feng Zemin, Zhang Yusheng, Zheng Penggang, Tian Linhui, Nie Wei, Wang ZheORCID, Huang Dandan, Daellenbach Kaspar R., Yao LeiORCID, Dada LubnaORCID, Bianchi FedericoORCID, Jiang Jingkun, Liu YongchunORCID, Kerminen Veli-MattiORCID, Kulmala MarkkuORCID
Abstract
Abstract. Oxygenated organic molecules (OOMs) are crucial for atmospheric new particle formation and secondary organic aerosol (SOA) growth. Therefore, understanding their chemical composition, temporal behavior, and sources is of great importance. Previous studies on OOMs mainly focus on environments where biogenic sources are predominant, yet studies on sites with dominant anthropogenic emissions, such as megacities, have been lacking. Here, we conducted long-term measurements of OOMs, covering four seasons of the year 2019, in urban Beijing. The OOM concentration was found to be the highest in summer (1.6×108 cm−3), followed by autumn (7.9×107 cm−3), spring (5.7×107 cm−3) and winter (2.3×107 cm−3), suggesting that enhanced photo-oxidation together with the rise in temperature promote the formation of OOMs. Most OOMs contained 5 to 10 carbon atoms and 3 to 7 effective oxygen atoms (nOeff=nO-2×nN). The average nOeff increased with increasing atmospheric
photo-oxidation capacity, which was the highest in summer and the lowest in
winter and autumn. By performing a newly developed workflow, OOMs were
classified into the following four types: aromatic OOMs, aliphatic OOMs, isoprene OOMs, and monoterpene OOMs. Among them, aromatic OOMs (29 %–41 %) and aliphatic OOMs (26 %–41 %) were the main contributors in all seasons, indicating that OOMs in Beijing were dominated by anthropogenic sources. The contribution of isoprene OOMs increased significantly in summer (33 %), which is much higher than those in the other three seasons (8 %–10 %). Concentrations of isoprene (0.2–5.3×107 cm−3) and monoterpene (1.1–8.4×106 cm−3) OOMs in Beijing were lower than those
reported at other sites, and they possessed lower oxygen and higher nitrogen contents due to high NOx levels (9.5–38.3 ppbv – parts per billion by volume) in Beijing. With regard to the nitrogen content of the two anthropogenic OOMs, aromatic OOMs were mainly composed of CHO and CHON species, while aliphatic OOMs were dominated by CHON and CHON2 ones. Such prominent differences suggest varying formation pathways between these two OOMs. By combining the measurements and an aerosol dynamic model, we estimated that the SOA growth rate through OOM condensation could reach 0.64, 0.61, 0.41, and 0.30 µg m−3 h−1 in autumn, summer, spring, and
winter, respectively. Despite the similar concentrations of aromatic and
aliphatic OOMs, the former had lower volatilities and, therefore, showed
higher contributions (46 %–62 %) to SOA than the latter (14 %–32 %). By contrast, monoterpene OOMs and isoprene OOMs, limited by low abundances or high volatilities, had low contributions of 8 %–12 % and 3 %–5 %, respectively. Overall, our results improve the understanding of the concentration, chemical composition, seasonal variation, and potential atmospheric impacts of OOMs, which can help formulate refined restriction policy specific to SOA control in urban areas.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference90 articles.
1. Aalto, P., Hämeri, K., Becker, E., Weber, R., Salm, J., Mäkelä,
J. M., Hoell, C., O'dowd, C. D., Hansson, H.-C., Väkevä, M.,
Koponen, I. K., Buzorius, G., and Kulmala, M.: Physical characterization of
aerosol particles during nucleation events, Tellus B, 53, 344–358, https://doi.org/10.3402/tellusb.v53i4.17127, 2001. 2. Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurtén, T., Otkjær, R. V., Kjaergaard, H. G., Stratmann, F., Herrmann, H., Sipilä, M., Kulmala, M., and Ehn, M.: Hydroxyl radical-induced formation of highly oxidized organic compounds, Nat. Commun., 7, 13677,
https://doi.org/10.1038/ncomms13677, 2016. 3. Berndt, T., Mentler, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M.,
and Hansel, A.: Accretion Product Formation from Ozonolysis and OH Radical
Reaction of α-Pinene: Mechanistic Insight and the Influence of Isoprene and Ethylene, Environ. Sci. Technol., 52, 11069–11077, https://doi.org/10.1021/acs.est.8b02210, 2018. 4. Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C.
R., Molteni, U., Herrmann, E., Adamov, A., Bukowiecki, N., Chen, X., Duplissy, J., Gysel, M., Hutterli, M., Kangasluoma, J., Kontkanen, J., Kürten, A., Manninen, H. E., Münch, S., Peräkylä, O.,
Petäjä, T., Rondo, L., Williamson, C., Weingartner, E., Curtius, J.,
Worsnop, D. R., Kulmala, M., Dommen, J., and Baltensperger, U.: New particle
formation in the free troposphere: A question of chemistry and timing,
Science, 352, 1109–1112, https://doi.org/10.1126/science.aad5456, 2016. 5. Bianchi, F., Garmash, O., He, X., Yan, C., Iyer, S., Rosendahl, I., Xu, Z.,
Rissanen, M. P., Riva, M., Taipale, R., Sarnela, N., Petäjä, T.,
Worsnop, D. R., Kulmala, M., Ehn, M., and Junninen, H.: The role of highly
oxygenated molecules (HOMs) in determining the composition of ambient ions
in the boreal forest, Atmos. Chem. Phys., 17, 13819–13831,
https://doi.org/10.5194/acp-17-13819-2017, 2017.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|