Aerosol characterisation in the subtropical eastern North Atlantic region using long-term AERONET measurements
-
Published:2022-08-31
Issue:17
Volume:22
Page:11105-11124
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Barreto África, García Rosa D.ORCID, Guirado-Fuentes Carmen, Cuevas EmilioORCID, Almansa A. Fernando, Milford Celia, Toledano CarlosORCID, Expósito Francisco J., Díaz Juan P., León-Luis Sergio F.
Abstract
Abstract. A comprehensive characterisation of atmospheric aerosols in the subtropical eastern North Atlantic has been carried out using long-term ground-based Aerosol Robotic NETwork (AERONET) photometric observations over the period 2005–2020 from a unique network made up of four stations strategically located from sea level to 3555 m on the island of Tenerife. This site can be considered a sentinel for the passage of airmasses going to Europe from Africa, and therefore the aerosol characterisation performed here adds important information for analysing their evolution during their path toward Northern Europe. Two of these stations (Santa Cruz de Tenerife – SCO – at sea level and La Laguna – LLO – at 580 m a.s.l.) are located within the marine atmospheric boundary layer (MABL), and the other two (Izaña – IZO – at 2373 m a.s.l. and Teide Peak – TPO – at 3555 m a.s.l.) are high mountain stations within the free troposphere (FT). Monthly climatology of the aerosol optical depth (AOD), Ångström exponent (AE), aerosol concentration, size distribution and aerosol optical properties has been obtained for the MABL and FT. Measurements that are quite consistent across the four sites
have been used to categorise the main atmospheric scenarios, and these measurements confirm an alternation between predominant
background conditions and predominant dust-loaded Saharan air mass conditions caused by seasonal dust transport over
the subtropical North Atlantic. Background conditions prevail in the MABL and FT for most of the year, while dust-laden conditions dominate in July and August. The MABL under background conditions appears as a well-mixed layer with a low aerosol concentration (the volume concentration, VolCon, ranges from 0.02 ± 0.01 to 0.04 ± 0.02 µm3 µm−2), a predominance of coarse-mode marine aerosols (the effective radius, Reff, changes from 1.60 ± 0.19 to 1.91 ± 0.34 µm), and a volume contribution of the fine-mode fraction Vf/Vt <0.35. The clean FT is characterised by remarkably low aerosol loading and a predominant impact of fine-mode aerosols throughout the year (Vf/Vt has a maximum value of 0.93 ± 0.13), with an average Reff of 0.16 ± 0.02 µm. However, under dust-laden conditions and mainly in summer, we observe a predominance of coarse-mode aerosols with maximum VolCon values of 0.26 ± 0.23 µm3 µm−2 for the MABL and 0.16 ± 0.12 (0.06 ± 0.05) µm3 µm−2 for IZO (TPO), and a similar and quite consistent fine-mode fraction of 0.12 ± 0.03 in the vertical within the MABL and FT. Similarities in micro-physical and optical intensive aerosol properties confirm that the Saharan Air Layer (SAL) is a well-mixed layer in terms of the particulate composition. An estimation of the difference in the aerosol loading in the 1 km layer between IZO and TPO (in terms of VolCon and AOD) is performed in this study, and this shows that aerosol loading at IZO is double that at TPO, but they have similar fine-mode fractions, effective radii and intensive optical properties. The long-term trend analysis at SCO shows a significant negative trend in the fine-mode AOD between 2005 and 2020 (−1.8 ± 0.5) × 10−5 yr−1, which might be linked to the large reduction in oil-refining SO2 emissions from the SCO refinery in 2012.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference61 articles.
1. Alonso-Pérez, S., Cuevas, E., Querol, X., Viana, M., and Guerra, J.: Impact of
the Saharan dust outbreaks on the ambient levels of total suspended particles
(TSP) in the marine boundary layer (MBL) of the Subtropical Eastern North
Atlantic Ocean, Atmos. Environ., 41, 9468–9480,
https://doi.org/10.1016/j.atmosenv.2007.08.049, 2007. a 2. Alonso-Pérez, S., Cuevas, E., Pérez, C., Querol, X., Baldasano, J., Draxler,
R., and Bustos, J. D.: Trend changes of African airmass intrusions in the
marine boundary layer over the subtropical Eastern North Atlantic region in
winter, Tellus B, 63, 255–265, https://doi.org/10.1111/j.1600-0889.2010.00524.x, 2011. a 3. Alonso-Pérez, S., Cuevas, E., Querol, X., Guerra, J., and Pérez, C.: African
dust source regions for observed dust outbreaks over the Subtropical Eastern
North Atlantic region, above 25∘ N, J. Arid Environ., 78, 100–109,
https://doi.org/10.1016/j.jaridenv.2011.11.013, 2012. a 4. Ångström, A.: On the atmospheric transmission of sun radiation and on
dust in the air, Geogr. Ann., 11, 156–166,
https://doi.org/10.2307/519399, 1929. a 5. Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J.,
Naik, V., Palmer, M., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J.,
Storelvmo, T., Thorne, T., Trewin, B., Achuta Rao, K., Adhikary, B., Allan,
R., Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J., Cassou,
C., Cherchi, A., Collins, W., Collins, W., Connors, S., Corti, S., Cruz, F.,
Dentener, F., Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes,
F., Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E.,
Forster, P., Fox-Kemper, B., Fuglestvedt, J.S.and Fyfe, J., Gillett, N.,
Goldfarb, L., Gorodetskaya, I., Gutierrez, J., Hamdi, R., Hawkins, E.,
Hewitt, H., Hope, P., Islam, A., Jones, C., Kaufman, D., Kopp, R., Kosaka,
Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock,
T., Meinshausen, M., M. S.-K., Monteiro, P., Ngo-Duc, T., Otto, F., Pinto,
I., Pirani, A., Raghavan, K., Ranasinghe, R., Ruane, A., Ruiz, L., Sallée,
J.-B., Samset, B., Sathyendranath, S., Seneviratne, S., Sörensson, A.,
Szopa, S., Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vautard, R., von
Schuckmann, K., Zaehle, S., Zhang, Y., and Zickfel, K.: Climate Change 2021:
The Physical Science Basis. Contribution of Working Group14 I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change; Technical
Summary, The Intergovernmental Panel on Climate Change AR6, Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.002,
2021. a, b
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|