An improved representation of aerosol mixing state for air quality–weather interactions
-
Published:2022-10-19
Issue:20
Volume:22
Page:13527-13549
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Stevens Robin,Ryjkov Andrei,Majdzadeh Mahtab,Dastoor Ashu
Abstract
Abstract. We implement a detailed representation of aerosol mixing state in the Global Environmental Multiscale – Modelling Air quality and CHemistry (GEM-MACH) air quality and weather forecast model. Our mixing-state representation includes three categories: one for more hygroscopic aerosol, one for less hygroscopic aerosol with a high black carbon (BC) mass fraction, and one for less hygroscopic aerosol with a low BC mass fraction. The more detailed representation allows us to better resolve two different aspects of aerosol mixing state: differences in hygroscopicity due to aerosol composition and the amount of absorption enhancement of BC due to non-absorbing coatings. Notably, this three-category representation allows us to account for BC thickly coated with primary organic matter, which enhances the absorption of the BC but has a low hygroscopicity. We compare the results of the three-category representation (1L2B, (one hydrophilic, two hydrophobic)) with a simulation that uses two categories, split by hygroscopicity (HYGRO), and a simulation using the original size-resolved internally mixed assumption (SRIM). We perform a case study that is focused on North America during July 2016, when there were intense wildfires over northwestern North America. We find that the more detailed representation of the aerosol hygroscopicity in both 1L2B and HYGRO decreases wet deposition, which increases aerosol concentrations, particularly of less hygroscopic species. The concentration of PM2.5 increases by 23 % on average. We show that these increased aerosol concentrations increase cloud droplet number concentrations and cloud reflectivity in the model, decreasing surface temperatures. Using two categories based on hygroscopicity yields only a modest benefit in resolving the coating thickness on black carbon, however. The 1L2B representation resolves BC with thinner coatings than the HYGRO simulation, resulting in absorption aerosol optical depths that are 3 % less on average, with greater differences over strong anthropogenic source regions. We did not find strong subsequent effects of this decreased absorption on meteorology.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference107 articles.
1. Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 3,
Sectional representation, J. Geophys. Res., 107, 4026,
https://doi.org/10.1029/2001JD000483, 2002. a, b, c 2. Adachi, K., Chung, S. H., and Buseck, P. R.: Shapes of soot aerosol particles
and implications for their effects on climate, J. Geophys.
Res., 115, D15206, https://doi.org/10.1029/2009JD012868, 2010. a 3. Akingunola, A., Makar, P. A., Zhang, J., Darlington, A., Li, S. M., Gordon, M.,
Moran, M. D., and Zheng, Q.: A chemical transport model study of plume-rise
and particle size distribution for the Athabasca oil sands, Atmos.
Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, 2018. a 4. Andersson, C., Bergström, R., Bennet, C., Robertson, L., Thomas, M., Korhonen, H., Lehtinen, K. E. J., and Kokkola, H.: MATCH-SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation, Geosci. Model Dev., 8, 171–189, https://doi.org/10.5194/gmd-8-171-2015, 2015. a, b 5. Anttila, T.: Sensitivity of cloud droplet formation to the numerical treatment
of the particle mixing state, J. Geophys. Res., 115, D21205,
https://doi.org/10.1029/2010jd013995, 2010. a
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|