The intradiscal failure pressure on porcine lumbar intervertebral discs: an experimental approach

Author:

Araújo A. R. G.,Peixinho N.,Pinho A.,Claro J. C. P.

Abstract

Abstract. The intervertebral disc is submitted to complex loading during its normal daily activities which are responsible for variations of the hydrostatic pressure in its structure. Thus, the determination of the magnitude of failure hydrostatic pressure is essential as a potential for the evaluation of the mechanisms that promote the weakening and the disruption of the annular fibers, commonly linked to herniation process on the spine column. However, few studies include the determination of the failure pressure on discs and the results are widely contradictory. Therefore, the objective of the present work is to determine the values of IDP that promotes the disc disruption. To achieve this goal, the tests were performed using a hydraulic cylinder that inflates the intervertebral disc. The results revealed a mean pressure failure of 0.62 ± 0.08 MPa for lumbar porcine samples (n = 6). From this approach it can be concluded that (1) the potential for disc injury may exist at low pressures for lumbar porcine discs when compared several animal and human ones; (2) the rupture of human cervical and porcine lumbar annular fibers could occur for values of intradiscal pressure that are within the physiological range.

Publisher

Copernicus GmbH

Subject

Industrial and Manufacturing Engineering,Fluid Flow and Transfer Processes,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3