The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties – Part 3: Investigation of condensed compounds generated by a near-explicit model of VOC oxidation

Author:

Barley M. H.,Topping D.,Lowe D.,Utembe S.,McFiggans G.

Abstract

Abstract. Calculations of the absorptive partitioning of secondary organic aerosol components were carried out using a number of methods to estimate vapour pressure and non-ideality. The sensitivity of predicted condensed component masses, volatility, O:C ratio, molar mass and functionality distribution to the choice of estimation methods was investigated in mixtures of around 2700 compounds generated by a near explicit mechanism of atmospheric VOC degradation. The sensitivities in terms of all metrics were comparable to those previously reported (using 10 000 semi-randomly generated compounds). In addition, the change in predicted aerosol properties and composition with changing VOC emission scenario was investigated showing key dependencies on relative anthropogenic and biogenic contributions. Finally, the contribution of non-ideality to the changing distribution of condensed components was explored in terms of the shift in effective volatility by virtue of component activity coefficients, clearly demonstrating both enhancement and reduction of component masses associated with negative and positive deviations from ideality.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3