Ozone seasonality above the tropical tropopause: reconciling the Eulerian and Lagrangian perspectives of transport processes

Author:

Abalos M.ORCID,Ploeger F.,Konopka P.,Randel W. J.ORCID,Serrano E.

Abstract

Abstract. We aim to reconcile the recently published, apparently contrasting results regarding the relative importance of tropical upwelling versus horizontal transport for the seasonality of ozone above the tropical tropopause. Different analysis methods in the literature (Lagrangian versus Eulerian, and isentropic versus pressure vertical coordinates) yield different perspectives of ozone transport, and the results must be carefully compared in equivalent terms to avoid misinterpretation. By examining the Lagrangian calculations in the Eulerian formulation, we show here that the results are in fact consistent with each other and with a common understanding of the ozone transport processes near and above the tropical tropopause. We further emphasize that the complementary approaches are suited for answering two different scientific questions: (1) what drives the observed seasonal cycle in ozone at a particular level above the tropical tropopause? and (2) how important is horizontal transport from mid-latitudes for ozone concentrations in the tropical lower stratosphere? Regarding the first question, the analysis of the transformed Eulerian mean (TEM) ozone budget shows that the annual cycle in tropical upwelling is the main forcing of the ozone seasonality at altitudes with large vertical gradients in the tropical lower stratosphere. To answer the second question a Lagrangian framework must be used, and the results show that a large fraction (~50%) of the ozone molecules ascending through the tropical lower stratosphere is of extra-tropical origin and has been in-mixed from mid-latitudes.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3