Coupled hydrological and hydrodynamic modelling application for climate change impact assessment in the Nemunas river watershed–Curonian Lagoon–southeastern Baltic Sea continuum

Author:

Idzelytė Rasa,Čerkasova NataljaORCID,Mėžinė JovitaORCID,Dabulevičienė Toma,Razinkovas-Baziukas Artūras,Ertürk Ali,Umgiesser GeorgORCID

Abstract

Abstract. We analyse the cumulative impacts of climate change in a complex basin–lagoon–sea system continuum, which covers the Nemunas river basin, Curonian Lagoon, and the southeastern part of the Baltic Sea. A unique, state-of-the-art coupled modelling system was developed using hydrological and hydrodynamic models. The results of four regional downscaled models from the Rossby Centre high-resolution regional atmospheric climate model have been bias-corrected using in situ measurements and were used as forcing to assess the changes that the continuum will undergo until the end of this century. Results show that the Curonian Lagoon will be subjected to higher river discharges that in turn increase the outgoing fluxes into the Baltic Sea. Through these higher fluxes, both the water residence time and saltwater intrusion into the lagoon event frequency will decrease. Most of these changes will be more pronounced in the northern part of the lagoon, which is more likely to be influenced by the variations in the Nemunas river discharge. Its delta area may be susceptible to flooding as a result of the elevated discharge during winter. The southern part of the lagoon will experience lesser changes. While water temperatures in the entire lagoon and the southeastern Baltic Sea will steadily increase and salinity will decrease, the foreseen changes in the physical characteristics will not cause significant shifts in the ecosystem functioning but may affect the nutrient retention capacity. However, some ecosystem services such as ice fishing are expected to vanish completely due to the loss of ice cover.

Funder

Lietuvos Mokslo Taryba

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3