Measurements of PM<sub>2.5</sub> with PurpleAir under atmospheric conditions

Author:

Ardon-Dryer KarinORCID,Dryer Yuval,Williams Jake N.,Moghimi Nastaran

Abstract

Abstract. The PurpleAir PA-II unit is a low-cost sensor for monitoring changes in the concentrations of particulate matter (PM) of various sizes. There are currently more than 10 000 PA-II units in use worldwide; some of the units are located in areas where no other reference air monitoring system is present. Previous studies have examined the performance of these PA-II units (or the sensors within them) in comparison to a co-located reference air monitoring system. However, because PA-II units are installed by PurpleAir customers, most of the PA-II units are not co-located with a reference air monitoring system and, in many cases, are not near one. This study aims to examine how each PA-II unit performs under atmospheric conditions when exposed to a variety of pollutants and PM2.5 concentrations (PM with an aerodynamic diameter smaller than 2.5 µm), when at a distance from the reference sensor. We examine how PA-II units perform in comparison to other PA-II units and Environmental Protection Agency (EPA) Air Quality Monitoring Stations (AQMSs) that are not co-located with them. For this study, we selected four different regions, each containing multiple PA-II units (minimum of seven per region). In addition, each region needed to have at least one AQMS unit that was co-located with at least one PA-II unit, all units needed to be at a distance of up to 5 km from an AQMS unit and up to 10 km between each other. Correction of PM2.5 values of the co-located PA-II units was implemented by multivariate linear regression (MLR), taking into account changes of temperature and relative humidity. The fit coefficients, received from the MLR, were then used to correct the PM2.5 values in all the remaining PA-II units in the region. Hourly PM2.5 measurements from each PA-II unit were compared to those from the AQMSs and other PA-II units in its region. The correction of the PM2.5 values improved the R-squared value (R2), root-mean-square error (RMSE), and mean absolute error (MAE) and slope values between all units. In most cases, the AQMSs and the PA-II units were found to be in good agreement (75 % of the comparisons had a R2>0.8); they measured similar values and followed similar trends; that is, when the PM2.5 values measured by the AQMSs increased or decreased, so did those of the PA-II units. In some high-pollution events, the corrected PA-II had slightly higher PM2.5 values compared to those measured by the AQMS. Distance between the units did not impact the comparison between units. Overall, the PA-II unit, after corrections of PM2.5 values, seems to be a promising tool for identifying relative changes in PM2.5 concentration with the potential to complement sparsely distributed monitoring stations and to aid in assessing and minimizing the public exposure to PM.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3