An integrated and homogenized global surface solar radiation dataset and its reconstruction based on a convolutional neural network approach

Author:

Jiao Boyang,Su Yucheng,Li QingxiangORCID,Manara Veronica,Wild MartinORCID

Abstract

Abstract. Surface solar radiation (SSR) is an essential factor in the flow of surface energy, enabling accurate capturing of long-term climate change and understanding of the energy balance of Earth's atmosphere system. However, the long-term trend estimation of SSR is subject to significant uncertainties due to the temporal inhomogeneity and the uneven spatial distribution of in situ observations. This paper develops an observational integrated and homogenized global terrestrial (except for Antarctica) station SSR dataset (SSRIHstation) by integrating all available SSR observations, including the existing homogenized SSR results. The series is then interpolated in order to obtain a 5∘ × 5∘ resolution gridded dataset (SSRIHgrid). On this basis, we further reconstruct a long-term (1955–2018) global land (except for Antarctica) SSR anomaly dataset with a 5∘ × 2.5∘ resolution (SSRIH20CR) by training improved partial convolutional neural network deep-learning methods based on 20th Century Reanalysis version 3 (20CRv3). Based on this, we analysed the global land- (except for Antarctica) and regional-scale SSR trends and spatiotemporal variations. The reconstruction results reflect the distribution of SSR anomalies and have high reliability in filling and reconstructing the missing values. At the global land (except for Antarctica) scale, the decreasing trend of the SSRIH20CR (−1.276 ± 0.205 W m−2 per decade) is smaller than the trend of the SSRIHgrid (−1.776 ± 0.230 W m−2 per decade) from 1955 to 1991. The trend of the SSRIH20CR (0.697 ± 0.359 W m−2 per decade) from 1991 to 2018 is also marginally lower than that of the SSRIHgrid (0.851 ± 0.410 W m−2 per decade). At the regional scale, the difference between the SSRIH20CR and SSRIHgrid is more significant in years and areas with insufficient coverage. Asia, Africa, Europe and North America cause the global dimming of the SSRIH20CR, while Europe and North America drive the global brightening of the SSRIH20CR. Spatial sampling inadequacies have largely contributed to a bias in the long-term variation of global and regional SSR. This paper's homogenized gridded dataset and the Artificial Intelligence reconstruction gridded dataset (Jiao and Li, 2023) are both available at https://doi.org/10.6084/m9.figshare.21625079.v1.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Ministero dell'Università e della Ricerca

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3