Using machine learning to construct TOMCAT model and occultation measurement-based stratospheric methane (TCOM-CH4) and nitrous oxide (TCOM-N2O) profile data sets

Author:

Dhomse Sandip S.ORCID,Chipperfield Martyn P.ORCID

Abstract

Abstract. Monitoring the atmospheric concentrations of greenhouse gases (GHGs) is crucial to improve our understanding of their climate impact. However, there are no long-term profile data sets of important GHGs that can be used to gain a better insight into the processes controlling their variations in the atmosphere. In this study, we apply corrections to chemical transport model (CTM) output based on profile measurements from two solar occultation instruments: the HALogen Occultation Experiment (HALOE) and the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS). The goal is to construct long-term (1991–2021), gap-free stratospheric profile data sets, hereafter referred to as TCOM, for two important GHGs. To estimate the corrections that need to be applied to the CTM profiles, we use the extreme gradient boosting (XGBoost) regression model. For methane (TCOM-CH4), we utilize both HALOE and ACE satellite profile measurements from 1992 to 2018 to train the XGBoost model, while profiles from 2019 to 2021 serve as an independent evaluation data set. As there are no nitrous oxide (N2O) profile measurements for earlier years, we derive XGBoost-derived correction terms to construct TCOM-N2O profiles using only ACE-FTS profiles from the 2004–2018 time period, with profiles from 2019–2021 used for the independent evaluation. Overall, both TCOM-CH4 and TCOM-N2O profiles exhibit excellent agreement with the available satellite-measurement-based data sets. We find that compared to evaluation profiles, biases in TCOM-CH4 and TCOM-N2O are generally less than 10 % and 50 %, respectively, throughout the stratosphere. The daily zonal mean profile data sets, covering altitude (15–60 km) and pressure (300–0.1 hPa) levels, are publicly available via the following links: https://doi.org/10.5281/zenodo.7293740 for TCOM-CH4 (Dhomse, 2022a) and https://doi.org/10.5281/zenodo.7386001 for TCOM-N2O (Dhomse, 2022b).

Funder

Natural Environment Research Council

European Space Agency

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3