Mysteriously high Δ<sup>14</sup>C of the glacial atmosphere: influence of <sup>14</sup>C production and carbon cycle changes

Author:

Dinauer Ashley,Adolphi FlorianORCID,Joos FortunatORCID

Abstract

Abstract. Despite intense focus on the ∼190 ‰ drop in atmospheric Δ14C during Heinrich Stadial 1 at ∼17.4–14.6 ka, the specific mechanisms responsible for the apparent Δ14C excess in the glacial atmosphere have received considerably less attention. The computationally efficient Bern3D Earth system model of intermediate complexity, designed for long-term climate simulations, allows us to address a very fundamental but still elusive question concerning the atmospheric Δ14C record: how can we explain the persistence of relatively high Δ14C values during the millennia after the Laschamp event? Large uncertainties in the pre-Holocene 14C production rate, as well as in the older portion of the Δ14C record, complicate our qualitative and quantitative interpretation of the glacial Δ14C elevation. Here we begin with sensitivity experiments that investigate the controls on atmospheric Δ14C in idealized settings. We show that the interaction with the ocean sediments may be much more important to the simulation of Δ14C than had been previously thought. In order to provide a bounded estimate of glacial Δ14C change, the Bern3D model was integrated with five available estimates of the 14C production rate as well as reconstructed and hypothetical paleoclimate forcing. Model results demonstrate that none of the available reconstructions of past changes in 14C production can reproduce the elevated Δ14C levels during the last glacial. In order to increase atmospheric Δ14C to glacial levels, a drastic reduction of air–sea exchange efficiency in the polar regions must be assumed, though discrepancies remain for the portion of the record younger than ∼33 ka. We end with an illustration of how the 14C production rate would have had to evolve to be consistent with the Δ14C record by combining an atmospheric radiocarbon budget with the Bern3D model. The overall conclusion is that the remaining discrepancies with respect to glacial Δ14C may be linked to an underestimation of 14C production and/or a biased-high reconstruction of Δ14C over the time period of interest. Alternatively, we appear to still be missing an important carbon cycle process for atmospheric Δ14C.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3