Development of on-site self-calibration and retrieval methods for sky-radiometer observations of precipitable water vapor

Author:

Momoi MasahiroORCID,Kudo Rei,Aoki KazumaORCID,Mori Tatsuhiro,Miura Kazuhiko,Okamoto HiroshiORCID,Irie Hitoshi,Shoji Yoshinori,Uchiyama Akihiro,Ijima Osamu,Takano Matsumi,Nakajima Teruyuki

Abstract

Abstract. The Prede sky radiometer measures direct solar irradiance and the angular distribution of diffuse radiances at the ultraviolet, visible, and near-infrared wavelengths. These data are utilized for the remote sensing of aerosols, water vapor, ozone, and clouds, but the calibration constant, which is the sensor output current of the extraterrestrial solar irradiance at the mean distance between Earth and the Sun, is needed. The aerosol channels, which are the weak gas absorption wavelengths of 340, 380, 400, 500, 675, 870, and 1020 nm, can be calibrated by an on-site self-calibration method, the Improved Langley method. This on-site self-calibration method is useful for the continuous long-term observation of aerosol properties. However, the continuous long-term observation of precipitable water vapor (PWV) by the sky radiometer remains challenging because calibrating the water vapor absorption channel of 940 nm generally relies on the standard Langley (SL) method at limited observation sites (e.g., the Mauna Loa Observatory) and the transfer of the calibration constant by a side-by-side comparison with the reference sky radiometer calibrated by the SL method. In this study, we developed the SKYMAP algorithm, a new on-site method of self-calibrating the water vapor channel of the sky radiometer using diffuse radiances normalized by direct solar irradiance (normalized radiances). Because the sky radiometer measures direct solar irradiance and diffuse radiance using the same sensor, the normalization cancels the calibration constant included in the measurements. The SKYMAP algorithm consists of three steps. First, aerosol optical and microphysical properties are retrieved using direct solar irradiances and normalized radiances at aerosol channels. The aerosol optical properties at the water vapor channel are interpolated from those at aerosol channels. Second, PWV is retrieved using the angular distribution of the normalized radiances at the water vapor channel. Third, the calibration constant at the water vapor channel is estimated from the transmittance of PWV and aerosol optical properties. Intensive sensitivity tests of the SKYMAP algorithm using simulated data of the sky radiometer showed that the calibration constant is retrieved reasonably well for PWV<2 cm, which indicates that the SKYMAP algorithm can calibrate the water vapor channel on-site in dry conditions. Next, the SKYMAP algorithm was applied to actual measurements under the clear-sky and low-PWV (<2 cm) conditions at two sites, Tsukuba and Chiba, Japan, and the annual mean calibration constants at the two sites were determined. The SKYMAP-derived calibration constants were 10.1 % and 3.2 % lower, respectively, than those determined by a side-by-side comparison with the reference sky radiometer. After determining the calibration constant, we obtained PWV from the direct solar irradiances in both the dry and wet seasons. The retrieved PWV values corresponded well to those derived from a global-navigation-satellite-system–global-positioning-system receiver, a microwave radiometer, and an AERONET (Aerosol Robotic Network) sun–sky radiometer at both sites. The correlation coefficients were greater than 0.96. We calculated the bias errors and the root mean square errors by comparing PWV between the DSRAD (direct solar irradiance) algorithm and other instruments. The magnitude of the bias error and the root mean square error were <0.163 and <0.251 cm for PWV<3 cm, respectively. However, our method tended to underestimate PWV in the wet conditions, and the magnitude of the bias error and the root mean square error became large, <0.594 and <0.722 cm for PWV>3 cm, respectively. This problem was mainly due to the overestimation of the aerosol optical thickness before the retrieval of PWV. These results show that the SKYMAP algorithm enables us to observe PWV over the long term, based on its unique on-site self-calibration method.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3