Early and mid-Holocene climate in the tropical Pacific: seasonal cycle and interannual variability induced by insolation changes

Author:

Luan Y.,Braconnot P.,Yu Y.,Zheng W.,Marti O.

Abstract

Abstract. Using a coupled atmosphere-ocean model we analyze the responses of the mean climate and interannual variations in the tropical Pacific to the changes in insolation during the early and mid-Holocene, with experiments in which only the variations of Earth's orbital configuration are considered. We first discuss common features of the Early and mid-Holocene climates compared to the pre-industrial conditions. In particular, an equatorial annual mean cooling that has a "U" shape across the tropical Pacific is simulated, whereas the ocean heat content is enhanced in the western tropical Pacific and decreased in the east. Similarly, the seasonality is enhanced in the west and reduced in the east. We show that the seasonality of the insolation forcing, the cloud radiative forcing and ocean dynamics all contribute to increasing these east–west contrasts. ENSO variability is reduced in the early Holocene and increases towards present-day conditions. Obliquity alone does not affect ENSO characteristics in the model. The reduction of ENSO magnitude results from the relationship between changes in seasonality, which involves wave propagation along the thermocline, and the timing of the development of ENSO anomalies. All these effects are larger in the Early Holocene compared to the mid-Holocene. Despite a one-month difference in the insolation forcing and corresponding response of SST, winds and thermocline depth between these two periods, the timing and changes in the east–west temperature and heat content gradients are similar. We suggest that it explains why the timing of development of ENSO is quite similar between these two climates and does not reflect the differences in the seasonal timing.

Publisher

Copernicus GmbH

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3