A bipolar perspective of the boundary layer and associated synoptic influences at South Pole Station, Antarctica and Summit Station, Greenland

Author:

Neff William,Cox ChristopherORCID,Shupe MathewORCID

Abstract

<p>Several observational programs have studied the atmospheric boundary layer (ABL) at South Pole Station, Antarctica, and Summit Station, Greenland, both sites at about 3km ASL on icecaps in both polar regions. In these field programs sodars played a key role in documenting the behavior of the boundary layer under distinctly different weather regimes: At the South Pole, high on the Antarctic ice sheet, the ABL is far from the Southern Ocean storm track and often exhibits prolonged quiescent cold spells punctuated by warm advection events above a shallow stable ABL[<em>Keller et al.</em>, 2021; <em>W D Neff</em>, 1999]. Summit Station is adjacent the Atlantic storm track and influenced by extratropical storms with attendant Atmospheric Rivers [<em>Mattingly et al.</em>, 2018; <em>W Neff</em>, 2018; <em>W Neff et al.</em>, 2014], decaying hurricanes, and large-scale Atlantic blocking events that bring warm air and clouds over the relatively smaller icesheet. </p><p>Sodar data from the South Pole were gathered in 1977, 1978, 1993, and 2003 (the final year in support of the <em>Antarctic Tropospheric Chemistry Investigation</em>, ANTCI [<em>W Neff et al.</em>, 2018]).  Summit Station has seen sodar operations that started in 2008 in support of studies of the dynamics of ozone and nitrogen oxides at Summit Station [<em>Van Dam et al.</em>, 2013] and beginning in 2010, extending through early 2021, in support of the ICECAPS (<em>Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit</em><strong>)</strong> study of cloud and radiation influences on the energy balance over the ice sheet [<em>Shupe et al.</em>, 2013].  Of particular interest at Summit Station is the internal boundary structure observed during fog episodes [<em>Cox et al.</em>, 2019] and during changes in synoptic weather patterns e.g. Figure 3 in [<em>Shupe et al.</em>, 2013] which also shows examples of supporting remote sensing observations. In this presentation we will compare and contrast sodar observations taken at these two icecap sites and describe several interesting events occurring in the last several summers over the Greenland icecap as seen in sodar and supporting observations at Summit Station.</p><p> </p><p>Cox, C. J., D. C. Noone, M. Berkelhammer, M. D. Shupe, W. D. Neff, N. B. Miller, V. P. Walden, and K. Steffen (2019), <em>Atmospheric Chemistry and Physics</em>, <em>19</em>(11), 7467-7485, doi:10.5194/acp-19-7467-2019.</p><p>Keller, L. M., K. J. Maloney, M. A. Lazzara, D. E. Mikolajczyk, and S. Di Battista (2021), <em>Journal of Climate</em>, 1-35, doi:10.1175/jcli-d-21-0404.1.</p><p>Mattingly, K. S., T. L. Mote, and X. Fettweis (2018), <em>Journal of Geophysical Research: Atmospheres</em>, doi:10.1029/2018JD028714.</p><p>Neff, W. (2018)<em>Nature Climate Change</em>, <em>8</em>(10), 857-858, doi:10.1038/s41558-018-0297-4.</p><p>Neff, W., G. P. Compo, F. M. Ralph, and M. D. Shupe (2014),  <em>Journal of Geophysical Research-Atmospheres</em>, <em>119</em>(11), 6520-6536, doi:10.1002/2014jd021470.</p><p>Neff, W., J. Crawford, M. Buhr, J. Nicovich, G. Chen, and D. Davis (2018), <em>Atmos. Chem. Phys.</em>, <em>18</em>(5), 3755-3778, doi:10.5194/acp-18-3755-2018.</p><p>Neff, W. D. (1999),, <em>Journal of Geophysical Research: Atmospheres</em>, <em>104</em>(D22), 27217-27251, doi:https://doi.org/10.1029/1999JD900483.</p><p>Shupe, M. D., et al. (2013),  <em>Bull. Amer. Meteorol. Soc.</em>, <em>94</em>(2), 169-+, doi:10.1175/bams-d-11-00249.1.</p><p>Van Dam, B., D. Helmig, W. Neff, and L. Kramer (2013), <em>Journal of Applied Meteorology and Climatology</em>, <em>52</em>(10), 2356-2362, doi:10.1175/jamc-d-13-055.1.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3