Satellite times-series analysis and assessment of the BFAST algorithm to detect possible abrupt changes in forest seasonality utilising Sentinel-1 and Sentinel-2 data. Case study: Paphos forest, Cyprus

Author:

Theocharidis ChristosORCID,Gitas IoannisORCID,Danezis ChrisORCID,Hadjimitsis Diofantos

Abstract

Climate change can be described as the dominant factor all these decades concerning changes in forest phenology while, at the same time, temperature affects the development time (Barrett & Brown, 2021; X.Zhou et al., 2020; Suepa et al., 2016). Satellite image-time series data have proven their value regarding forest health and forest phenology observation. Monitoring continuous plant phenology is critical for the ecosystem at a regional and global level since the high sensitivity of vegetation life cycle to climate change; the so-called phenophases are essential biological indicators to comprehend how climate change has impacted these ecosystems and how this will change the ensuing years. (Buitenwerf, Rose, and Higgins 2015; Johansson et al. 2015).  This study conducts a time-series analysis using the breaks for additive season and trend (BFAST) time-series decomposition algorithm, to detect possible abrupt changes in forest seasonality and the impacts of extreme climatic events on forest health, examining Sentinel-1 and Sentinel-2 data for the period 2017-2021. The backscatter coefficient from Sentinel-1, Normalised Difference Moisture Index (NDMI), Enhanced Vegetation Index (EVI), and Green Chlorophyll Index (GCI) were created by Sentinel-2 and assessed to find possible correlations between them. All the satellite time-series data derived through the Google Earth Engine platform.The study area is the Paphos Forest, managed by the Department of Forest which could be described as a representative Mediterranean forest; thus, it is vital to monitor it because Mediterranean forests are expected to experience the first climate change in Europe. More specifically, the study focus on the Nortwest, West and Southwest areas of the Paphos Forest since the SAR images are from Ascending orbit. Moreover, Paphos forest has unspoiled vegetation, and a highly reduced number of forest wildfires have occurred in recent years, favouring the reliability of the research's results.   AcknowledgementsThe authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project (www.excelsior2020.eu). The 'EXCELSIOR' project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 857510, from the Government of the Republic of Cyprus through the Directorate General for the European Programmes, Coordination and Development and the Cyprus University of Technology.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3