Investigating the spatial and temporal variation of plants traits across flux sites using a trait-based dynamic vegetation model

Author:

Kumar DushyantORCID,Scheiter SimonORCID,Langan LiamORCID,Koirala SujanORCID,Pfeiffer MirjamORCID,Martens CarolaORCID,Weber UlrichORCID,Carvalhais NunoORCID

Abstract

The study of plant trait variability is critical for understanding ecosystem dynamics and predicting the response of vegetation to varying climatic conditions. Understanding the factors controlling the spatial and temporal variability in vegetation traits is key for addressing the ecosystem responses and feedbacks to changes in climate. In this study, we used the adaptive dynamic global vegetation model version 2 (aDGVM2) to simulate the temporal evolution and spatial distribution of plant traits across a wide range in edapho-climatic conditions. For such, we select locations of existing different ecosystem types and where in situ meteorological and eddy covariance flux measurements are taken.We forced the aDGVM2 with FAO soil and flux site climate data, extended until 2020 and gap-filled with ERA5 data. To ensure that the simulated vegetation had sufficient time to adapt to prevailing local environmental conditions we conducted simulations for 500 years, split into a 400-year spin-up phase and a 100-year transient phase. For the spin-up phase, we randomly sampled years of the first 30 years of daily climate. Stochasticity in the selection-driven assembly of plant communities within the model can lead to multiple potential state; therefore, 10 replicate runs were conducted for each site with same model configuration.We examine the differences in the 25 simulated trait values across sites, replicates and time via an analysis of variance (ANOVA). The analysis shows significant differences in trait values between sites, with some traits showing higher variability than others. In particular, we find that traits related to plant structural support (height, stem counts) were highly variable across sites, while traits related to resource acquisition (e.g., specific leaf area, leaf nitrogen content) are more stable. These results provide important insights into the factors that influence trait variability in space, and will be valuable for predicting the response of terrestrial ecosystems to environmental change. Further understanding the factors driving trait variability is of essential value in the design of mitigation and adaptation strategies and guide conservation efforts in the face of a rapidly changing world.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3