Hybrid long-period volcanic events observed in off Nicobar region, the Andaman Sea from a passive OBS experiment

Author:

Aswini Karanam KattilORCID,Dewangan Pawan,Kamesh Raju Kattoju Achuta,Vadakkeyakath Yatheesh,Singha Pabitra,Reddy Ramakrushana,Arya Lalit

Abstract

<p>The off Nicobar region in the Andaman Sea is witnessing frequent earthquake swarms after December 2004 Tsunamigenic earthquake in January 2005, March and October 2014, November 2015 and April 2019. In this study, we present the geophysical evidence of active volcanism in the Off Nicobar back-arc region on 21<sup>st</sup> and 22<sup>nd</sup> March 2014 based on a passive Ocean Bottom Seismometer (OBS) experiment. We detected a series of hybrid earthquake events characterized by the onset of high–frequency signal (1-10 Hz) which is followed by a long period waveform of up to 600s having a range of 0.1-1 Hz. The waveforms appear to be emergent and lack the onset of a distinct S-phase. We also observed a very high frequency (10-40 Hz) hydro-acoustic phase in the coda of long-period events.  These hybrid events are considered to be volcano-tectonic (VT) events that may trigger magmatic activities in the Off Nicobar region. We have identified and located 141 high-frequency events on 21<sup>st</sup> and 22<sup>nd</sup> March 2014 using hypocent v.3.2 program and they are distributed along NW-SE direction aligning with the submarine volcanoes defining the volcanic arc as observed in the high-resolution bathymetry data. The fault plane solution of the major high-frequency events suggests strike-slip faulting with the strike, dip and rake values of 334<sup>°</sup>, 89<sup>°</sup> and 171<sup>°</sup>, respectively along the direction of the prevalent sliver strike-slip faulting in the Andaman back-arc region. We propose that the upward movement of magma is a plausible mechanism which can explain the frequent occurrence of earthquake swarms in the off Nicobar region. The stress generated from magma movement may initially trigger shallow VT events such as faulting or dike intrusions and later generate long period ringing associated with the resonance of the magma chamber. The shallow nature of the events also generates a hydroacoustic wave which is detected in the OBS experiment as the source region is in the SOFAR channel.</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3