Huge Landslides along the Jinsha River in Southeastern Tibetan Plateau and Their Association with the Recent Activity of Jinsha River Fault Zone

Author:

Chang Zufeng,Chang Hao,Mao Zebin,Guo Ruojin

Abstract

<p>     The Jinsha river fault zone in the eastern margin of the Tibetan Plateau is an old suture structure after the shutting of the proto-Tethys and a large scale ultra-lithosphere fault zone consisted of  5 to 6 fault branches with a width of 50km, have a long  geological evolution history. Since late Quatery, this fault zone is mainly dominated by dextral strike slip with partial thrusting component, absorbing  partial energy of the extrusion movement of  Tibetan Plateau. Along the fault zone, lower terraces of Jinsha river at Muronglou, Buzhong, Langzhong, Guxue, etc. were displaced, indicating the fault zone is active in late Quaternary, with an average rate of 3.5~4.3mm/ /yr. horizontally and 0.9-1.1mm/yr. vertically respectively in Holocene. Influenced by the intense fault activity of Jinsha river fault zone, this region is characterized by fractured rocks, strongly weathered surfaces.</p><p>      The Jinsha river, the upstream of the Yangtze river, parallel to Jinshajiang fault zone, flows from north to south, forming deep river valley and huge terrain elevation difference. Numerous huge landslides have developed along the river, for example, there are 23 giant avalanches in the 38 km long reach from Narong to Rongxue, with general volumes of 10~70 million m<sup>3</sup> and even up to several hundreds million m<sup>3</sup>. Moreover, the landslides produce many loose clastic fragments which detonate many debris flows and river blocking. The latest disaster event is the Baige barrier lake in 2018 caused by landslide, with a water storage capacity of 524 million m<sup>3</sup>, causing tens of billions of yuan of economic losses. These landslides are distributed along the fault and its two sides, suggesting that these huge avalanches are closely related to the intense activity of the fault zone and special topography.</p><p>Keywords: Huge landslide, Jinsha River, Jinsha River Fault Zone, late Quatery activity</p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3