Constraining long-term NOx emissions over the United States and Europe using nitrate wet deposition monitoring networks

Author:

Christiansen AmyORCID,Mickley Loretta J.,Hu LuORCID

Abstract

Abstract. Nitrogen oxides (NOx= NO + NO2) play a critical role in regulating tropospheric chemistry, yet NOx emission estimates are subject to large uncertainties, casting doubt on our ability to accurately model secondary pollutants such as ozone. Bottom-up emissions inventories are subject to a number of uncertainties related to estimates of emission activities, scaling factors, and fuel sources. Here, we provide an additional constraint on NOx emissions and trends using nitrate wet deposition (NWD) fluxes from the United States National Atmospheric Deposition Program (NADP) and the European Monitoring and Evaluation Programme (EMEP). We use these NWD measurements to evaluate anthropogenic and total NOx trends and magnitudes in the global Community Emissions Data System (CEDS) emissions inventory and the GEOS-Chem chemical transport model from 1980–2020. Over both the United States and Europe, observed NWD trends track well with anthropogenic NOx emissions from the CEDS inventory until 2010, after which NWD trends level out in contrast to continued decreases in CEDS. After 2010, NWD trends are able to reproduce total NOx emissions trends when the influences of both anthropogenic and background sources are considered. Observed NWD fluxes are also able to capture NOx emissions decreases over the 2020 COVID-19 lockdown period and are consistent with satellite and surface measurements of NO2. These results suggest that NWD fluxes constrain total NOx emissions well, whether trends are driven by anthropogenic or background sources. We further compare modeled and observed NWD to provide an additional line of evidence for potential overestimates of anthropogenic NOx in emissions inventories. Over the United States, we find that NWD is overestimated in summer from 1980–2017 by 15 %–20 % on average (interquartile range: 11 %–31 %), with overestimates most prominent in the eastern US after 2000 (20 % on average), implying an overestimate of NOx emissions in the CEDS inventory (0.5×0.5° resolution). Over Europe, we find that modeled NWD is overestimated in all seasons from 1980–2017, with the strongest average overestimates occurring in summer and fall (175 % and 170 %, respectively). These overestimates may be reduced by cutting anthropogenic NOx emissions by 50 % in CEDS over Europe (i.e., cutting the 1980–2017 average annual emissions from 2.6 to 1.3 Tg N), but summertime and fall NOx may still need to be reduced further for observations and models to align. Overestimates may extend to other inventories such as the EMEP inventory, which estimates comparable but lower emissions than CEDS, with a 1990–2017 average of 2.1 Tg N relative to the CEDS 1990–2017 average of 2.4 Tg N. We find that NOx emission reductions over Europe improve model ozone at the surface, reducing the model summertime ozone overestimate from 14 % to 2 %.

Funder

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Reference117 articles.

1. Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E., Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., Louis, V. L. St., Talbot, R. W., Edgerton, E. S., Zhang, Y., and Sunderland, E. M.: Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12, 591–603, https://doi.org/10.5194/acp-12-591-2012, 2012.

2. Ancellet, G., Godin-Beekmann, S., Smit, H. G. J., Stauffer, R. M., Van Malderen, R., Bodichon, R., and Pazmiño, A.: Homogenization of the Observatoire de Haute Provence electrochemical concentration cell (ECC) ozonesonde data record: comparison with lidar and satellite observations, Atmos. Meas. Tech., 15, 3105–3120, https://doi.org/10.5194/amt-15-3105-2022, 2022.

3. Anderson, D. C., Loughner, C. P., Diskin, G., Weinheimer, A., Canty, T. P., Salawitch, R. J., Worden, H. M., Fried, A., Mikoviny, T., Wisthaler, A., and Dickerson, R. R.: Measured and modeled CO and NO y in DISCOVER-AQ: An evaluation of emissions and chemistry over the eastern US, Atmos. Environ., 96, 78–87, https://doi.org/10.1016/j.atmosenv.2014.07.004, 2014.

4. Baldasano, J. M.: COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain), Sci. Total Environ., 741, 140353, https://doi.org/10.1016/j.scitotenv.2020.140353, 2020.

5. Bar, S., Parida, B. R., Mandal, S. P., Pandey, A. C., Kumar, N., and Mishra, B.: Impacts of partial to complete COVID-19 lockdown on NO2 and PM2.5 levels in major urban cities of Europe and USA, Cities, 117, 103308, https://doi.org/10.1016/j.cities.2021.103308, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3