Insights into soil NO emissions and the contribution to surface ozone formation in China

Author:

Huang Ling,Fang Jiong,Liao Jiaqiang,Yarwood GregORCID,Chen Hui,Wang Yangjun,Li LiORCID

Abstract

Abstract. Elevated ground-level ozone concentrations have emerged as a major environmental issue in China. Nitrogen oxide (NOx) is a key precursor to ozone formation. Although control strategies aimed at reducing NOx emissions from conventional combustion sources are widely recognized, soil NOx emissions (mainly as NO) due to microbial processes have received little attention. The impact of soil NO emissions on ground-level ozone concentration is yet to be evaluated. This study estimated soil NO emissions in China using the Berkeley–Dalhousie Soil NOx Parameterization (BDSNP) algorithm. A typical modeling approach was used to quantify the contribution of soil NO emissions to surface ozone concentration. The brute-force method (BFM) and the Ozone Source Apportionment Technology (OSAT) implemented in the Comprehensive Air Quality Model with Extensions (CAMx) were used. The total soil NO emissions in China for 2018 were estimated to be 1157.9 Gg N, with an uncertainty range of 715.7–1902.6 Gg N. Spatially, soil NO emissions are mainly concentrated in Central China, North China, Northeast China, the northern Yangtze River Delta (YRD), and the eastern Sichuan Basin, with distinct diurnal and monthly variations that are mainly affected by the temperature and timing of fertilizer application. Both the BFM and OSAT results indicate a substantial contribution of soil NO emissions to the maximum daily 8 h (MDA8) ozone concentrations by 8.0–12.5 µg m−3 on average for June 2018, with the OSAT results being consistently higher than the BFM results. The results also showed that soil NO emissions led to a relative increase in ozone exceedance days by 10.5 %–43.5 % for selected regions. Reducing the soil NO emissions resulted in a general decrease in monthly MDA8 ozone concentrations, and the magnitude of ozone reduction became more pronounced as reductions increased. However, even with complete reductions in soil NO emissions, approximately 450.3 million people are still exposed to unhealthy ozone levels, necessitating multiple control policies at the same time. This study highlights the importance of soil NO emissions for ground-level ozone concentrations and the potential for reducing NO emissions as a future control strategy for ozone mitigation in China.

Funder

National Natural Science Foundation of China

Shanghai International Science and Technology

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3