Evaluating the Tea Bag Index approach for different management practices in agroecosystems using long-term field experiments in Austria and Sweden

Author:

Gmach Maria Regina,Bolinder Martin Anders,Menichetti LorenzoORCID,Kätterer ThomasORCID,Spiegel HeideORCID,Åkesson Olle,Friedel Jürgen KurtORCID,Surböck Andreas,Schweinzer Agnes,Sandén TaruORCID

Abstract

Abstract. Litter decomposition is an important factor affecting local and global C cycles. It is known that decomposition through soil microbial activity in ecosystems is mainly influenced by soil type and climatic conditions. However, for agroecosystems, there remains a need for a better understanding of how management practices influence litter decomposition. This study examined the effect of different management practices on decomposition at 29 sites with long-term (mean duration of 38 years) field experiments (LTEs) using the Tea Bag Index (TBI) protocol with standard litter (rooibos and green tea) developed by Keuskamp et al. (2013). The objective was to determine if the TBI decomposition rate (k) and stabilization factor (S) are sensitive enough to detect differences in litter decomposition between management practices as well as how they interact with edaphic factors, crop type and local climatic conditions. Tea bags were buried and collected after ∼90 d at 16 Austrian and 13 Swedish sites. The treatments in the Austrian LTEs focused on mineral and organic fertilizer application, tillage systems and crop residue management, whereas those in Sweden addressed cropping systems, mineral fertilizer application and tillage systems. The results for Austria showed that the incorporation of crop residue and high-N fertilizer application increased k, compared with crop residue removal and low or no N application, respectively. Minimum tillage had significantly higher k compared with reduced and conventional tillage. In Sweden, fertilized plots showed higher S than non-fertilized plots and high-N fertilizer had the highest k. Growing spring cereal led to higher k than forage crops. Random forest regressions for Austria and Sweden jointly showed that k and S were mainly governed by climatic conditions, which explained more than 70 % of their variation. However, under similar climatic conditions, management practices strongly influenced decomposition dynamics. It would be appropriate to apply the TBI approach to a more large-scale network using LTEs for agroecosystems, in order to improve the index's usefulness as an indicator of the effect of management practices on litter decomposition dynamics, particularly linking it with the potential for C storage.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3