Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data

Author:

Yin Zun,Ottlé CatherineORCID,Ciais Philippe,Guimberteau MatthieuORCID,Wang XuhuiORCID,Zhu DanORCID,Maignan FabienneORCID,Peng ShushiORCID,Piao Shilong,Polcher JanORCID,Zhou Feng,Kim HyungjunORCID,

Abstract

Abstract. Soil moisture is a key variable of land surface hydrology, and its correct representation in land surface models is crucial for local to global climate predictions. The errors may come from the model itself (structure and parameterization) but also from the meteorological forcing used. In order to separate the two source of errors, four atmospheric forcing datasets, GSWP3 (Global Soil Wetness Project Phase 3), PGF (Princeton Global meteorological Forcing), CRU-NCEP (Climatic Research Unit-National Center for Environmental Prediction), and WFDEI (WATCH Forcing Data methodology applied to ERA-Interim reanalysis data), were used to drive simulations in China by the land surface model ORCHIDEE-MICT(ORganizing Carbon and Hydrology in Dynamic EcosystEms: aMeliorated Interactions between Carbon and Temperature). Simulated soil moisture was compared with in situ and satellite datasets at different spatial and temporal scales in order to (1) estimate the ability of ORCHIDEE-MICT to represent soil moisture dynamics in China; (2) demonstrate the most suitable forcing dataset for further hydrological studies in Yangtze and Yellow River basins; and (3) understand the discrepancies of simulated soil moisture among simulations. Results showed that ORCHIDEE-MICT can simulate reasonable soil moisture dynamics in China, but the quality varies with forcing data. Simulated soil moisture driven by GSWP3 and WFDEI shows the best performance according to the root mean square error (RMSE) and correlation coefficient, respectively, suggesting that both GSWP3 and WFDEI are good choices for further hydrological studies in the two catchments. The mismatch between simulated and observed soil moisture is mainly explained by the bias of magnitude, suggesting that the parameterization in ORCHIDEE-MICT should be revised for further simulations in China. Underestimated soil moisture in the North China Plain demonstrates possible significant impacts of human activities like irrigation on soil moisture variation, which was not considered in our simulations. Finally, the discrepancies of meteorological variables and simulated soil moisture among the four simulations are analyzed. The result shows that the discrepancy of soil moisture is mainly explained by differences in precipitation frequency and air humidity rather than differences in precipitation amount.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference103 articles.

1. Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.

2. An, R., Zhang, L., Wang, Z., Quaye-Ballard, J. A., You, J. J., Shen, X. J., Gao, W., Huang, L. J., Zhao, Y. H., and Ke, Z. Y.: Validation of the ESA CCI soil moisture product in China, Int. J. Appl. Earth Obs., 48, 28–36, https://doi.org/10.1016/j.jag.2015.09.009, 2016.

3. An, W. M., Li, Z. S., Wang, S., Wu, X., Lu, Y. H., Liu, G. H., and Fu, B. J.: Exploring the effects of the “Grain for Green” program on the differences in soil water in the semi-arid Loess Plateau of China, Ecol. Eng., 107, 144–151, https://doi.org/10.1016/j.ecoleng.2017.07.017, 2017.

4. Ayalew, T. B., Krajewski, W. F., Mantilla, R., and Small, S. J.: Exploring the effects of hillslope-channel link dynamics and excess rainfall properties on the scaling structure of peak-discharge, Adv. Water Resour., 64, 9–20, https://doi.org/10.1016/j.advwatres.2013.11.010, 2014.

5. Basheer, M. and Elagib, N. A.: Sensitivity of Water-Energy Nexus to dam operation: A Water-Energy Productivity concept, Sci. Total Environ., 616–617, 918–926, https://doi.org/10.1016/j.scitotenv.2017.10.228, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3