On the estimation of boundary layer heights: a machine learning approach

Author:

Krishnamurthy Raghavendra,Newsom Rob K.,Berg Larry K.ORCID,Xiao Heng,Ma Po-LunORCID,Turner David D.ORCID

Abstract

Abstract. The planetary boundary layer height (zi) is a key parameter used in atmospheric models for estimating the exchange of heat, momentum, and moisture between the surface and the free troposphere. Near-surface atmospheric and subsurface properties (such as soil temperature, relative humidity, etc.) are known to have an impact on zi. Nevertheless, precise relationships between these surface properties and zi are less well known and not easily discernible from the multi-year dataset. Machine learning approaches, such as random forest (RF), which use a multi-regression framework, help to decipher some of the physical processes linking surface-based characteristics to zi. In this study, a 4-year dataset from 2016 to 2019 at the Southern Great Plains site is used to develop and test a machine learning framework for estimating zi. Parameters derived from Doppler lidars are used in combination with over 20 different surface meteorological measurements as inputs to a RF model. The model is trained using radiosonde-derived zi values spanning the period from 2016 through 2018 and then evaluated using data from 2019. Results from 2019 showed significantly better agreement with the radiosonde compared to estimates derived from a thresholding technique using Doppler lidars only. Noteworthy improvements in daytime zi estimates were observed using the RF model, with a 50 % improvement in mean absolute error and an R2 of greater than 85 % compared to the Tucker method zi. We also explore the effect of zi uncertainty on convective velocity scaling and present preliminary comparisons between the RF model and zi estimates derived from atmospheric models.

Funder

Office of Science

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference98 articles.

1. Atmospheric Radiation Measurement (ARM) user facility: Balloon-Borne Sounding System (SONDEWNPN). Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), updated hourly, compiled by: Keeler, E., Ritsche, M., Coulter, R., Kyrouac, J., and Holdridge, D., ARM Data Center, https://doi.org/10.5439/1021460, 2001.

2. Atmospheric Radiation Measurement (ARM) user facility: Constrained Variational Analysis (60VARANARUC). Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Tao, C. and Xie, S., ARM Data Center, https://doi.org/10.5439/1647300, 2004.

3. Banakh, V. A., Smalikho, I. N., and Falits, A. V.: Estimation of the height of the turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam, Atmos. Meas. Tech., 14, 1511–1524, https://doi.org/10.5194/amt-14-1511-2021, 2021.

4. Berg, L. K., Newsom, R. K., and Turner, D. D.: Year-long vertical velocity statistics derived from Doppler lidar data for the continental convective boundary layer, J. Appl. Meteorol. Clim., 56, 2441–2454, 2017.

5. Biraud, S., Billesbach, D., and Chan, S.: ECOR: 30-minute averaged surface vertical fluxes of momentum, sensible heat, and latent heat at Southern Great Plains central facility, DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States) [data set], available at: https://adc.arm.gov/discovery/#/results/datastream::sgpco2flx25mC1.b1 (last access: 7 March 2020), 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3