Unveiling amplified isolation in climate networks due to global warming

Author:

Cheng Yifan,Qiao Panjie,Hou Meiyi,Chen Yuan,Liu Wenqi,Zhang Yongwen

Abstract

Abstract. Our study utilizes a global reanalysis of near-surface daily air temperature data spanning the years from 1949 to 2019 to construct climate networks. By employing community detection for each year, we reveal the evolving community structure of the climate network within the context of global warming. Our findings indicate significant changes in measures such as network modularity and the number of communities over the past 30 years. Notably, the community structure of the climate network has undergone a discernible transition since the early 1980s. We attribute this transition to the substantial increase in isolated nodes since the 1980s, primarily concentrated in equatorial ocean regions. Additionally, we demonstrate that nodes experiencing amplified isolation tend to diminish connectivity with other nodes globally, particularly those within the same oceanic basin, while showing a significant strengthening of connections with the Eurasian and North African continents. We deduce that the mechanism driving amplified isolation in the climate network may be comprehended through the weakening of tropical circulations, such as the Hadley cell and Walker circulation, in response to increasing greenhouse gases.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3