Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area

Author:

Peron Arianna,Graus Martin,Striednig Marcus,Lamprecht ChristianORCID,Wohlfahrt GeorgORCID,Karl ThomasORCID

Abstract

Abstract. The anthropogenic and biogenic contributions of isoprene, monoterpenes, sesquiterpenes and methanol in an urban area were estimated based on direct eddy covariance flux observations during four campaigns between 2018 and 2021. While these compounds are typically thought to be dominated by biogenic sources on regional and global scales, the role of potentially significant anthropogenic emissions in urban areas has been recently debated. Typical fluxes of isoprene, monoterpenes and sesquiterpenes were on the order of 0.07 ± 0.02, 0.09 and 0.003 nmol m−2 s−1 during spring. During summer, emission fluxes of isoprene, monoterpenes and sesquiterpenes were higher on the order of 0.85 ± 0.09, 0.11 and 0.004 nmol m−2 s−1. It was found that the contribution of the anthropogenic part is strongly seasonally dependent. For isoprene, the anthropogenic fraction can be as high as 64 % in spring but is typically very low < 18 % during the summer season. For monoterpenes, the anthropogenic fraction was estimated to be between 43 % in spring and less than 20 % in summer. With values of 2.8 nmol m−2 s−1 in spring and 3.2 nmol m−2 s−1 in summer, methanol did not exhibit a significant seasonal variation of observed surface fluxes. However, there was a difference in emissions between weekdays and weekends (about 2.3 times higher on weekdays in spring). This suggests that methanol emissions are likely influenced by anthropogenic activities during all seasons.

Funder

Austrian Science Fund

Publisher

Copernicus GmbH

Reference138 articles.

1. Aaltonen, H., Pumpanen, J., Pihlatie, M., Hakola, H., Hellén, H., Kulmala, L., Vesala, T., and Bäck, J.: Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn, Agr. Forest Meteorol., 151, 682–691, https://doi.org/10.1016/j.agrformet.2010.12.010, 2011.

2. Acton, W. J. F., Schallhart, S., Langford, B., Valach, A., Rantala, P., Fares, S., Carriero, G., Tillmann, R., Tomlinson, S. J., Dragosits, U., Gianelle, D., Hewitt, C. N., and Nemitz, E.: Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy, Atmos. Chem. Phys., 16, 7149–7170, https://doi.org/10.5194/acp-16-7149-2016, 2016.

3. Allmann, S., Späthe, A., Bisch-Knaden, S., Kallenbach, M., Reinecke, A., Sachse, S., Baldwin, I. T., and Hansson, B. S.: Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition, Elife, May 14, e00421, https://doi.org/10.7554/eLife.00421, 2013.

4. Barber, S., Blake, R. S., White, I. R., Monks, P. S., Reich, F., Mullock, S., and Ellis, A. M.: Increased Sensitivity in Proton Transfer Reaction Mass Spectrometry by Incorporation of a Radio Frequency Ion Funnel, Anal. Chem., 84, 5387–5391, https://doi.org/10.1021/ac300894t, 2012.

5. Beauchamp, J., Wisthaler, A., Hansel, A., Kleist, E., Miebach, M., Niinemets, Ü., and Wildt, J.: Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products, Plant Cell Environ., 28, 1334–1343, https://doi.org/10.1111/j.1365-3040.2005.01383.x, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3