Monitoring European anthropogenic NOx emissions from space
-
Published:2024-07-03
Issue:13
Volume:24
Page:7523-7534
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
van der A Ronald J.ORCID, Ding JieyingORCID, Eskes HenkORCID
Abstract
Abstract. Since the launch of TROPOMI on the Sentinel-5 Precursor (S5P) satellite, NO2 observations have become available with a resolution of 3.5× 5 km, which makes monitoring NOx emissions possible at the scale of city districts and industrial facilities. For Europe, emissions are reported on an annual basis for country totals and large industrial facilities and made publicly available via the European Environment Agency (EEA). Satellite observations can provide independent and more timely information on NOx emissions. A new version of the inversion algorithm DECSO (Daily Emissions Constrained by Satellite Observations) has been developed for deriving emissions for Europe on a daily basis, averaged to monthly mean maps. The estimated precision of these monthly emissions is about 25 % for individual grid cells. These satellite-derived emissions from DECSO have been compared to the officially reported European emissions and spatial–temporal disaggregated emission inventories. The country total DECSO NOx emissions are close to the reported emissions and the emissions compiled by the Copernicus Atmosphere Monitoring Service (CAMS). Comparison of the spatially distributed NOx emissions of DECSO and CAMS showed that the satellite-derived emissions are often higher in cities, while they are similar for large power plants and slightly lower in rural areas.
Funder
European Commission
Publisher
Copernicus GmbH
Reference49 articles.
1. Bayley, G. V. and Hammersley, J. M.: The “Effective” Number of Independent Observations in an Autocorrelated Time Series, Supplement to J. R. Stat. Soc., 8, 184–197, https://doi.org/10.2307/2983560, 1946. 2. Beirle, S., Borger, C., Dörner, S., Eskes, H., Kumar, V., de Laat, A., and Wagner, T.: Catalog of NOx emissions from point sources as derived from the divergence of the NO2 flux for TROPOMI, Earth Syst. Sci. Data, 13, 2995–3012, https://doi.org/10.5194/essd-13-2995-2021, 2021. 3. Beirle, S., Borger, C., Jost, A., and Wagner, T.: Improved catalog of NOx point source emissions (version 2), Earth Syst. Sci. Data, 15, 3051–3073, https://doi.org/10.5194/essd-15-3051-2023, 2023. 4. Box, Jenkins, Reinsel, Time Series Analysis: Forecasting and Control, 4th edn., Wiley, ISBN 978-0-470-27284-8, p. 30, 2008. 5. Božnar, M. Z., Mlakar, P., Grašič, B., and Tinarelli, G.: Environmental impact assessment of a new thermal power plant Šoštanj Block 6 in highly complex terrain, Int. J. Environ. Pollut., 48, 136–144, 2012.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|