Machine learning for numerical weather and climate modelling: a review
-
Published:2023-11-14
Issue:22
Volume:16
Page:6433-6477
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
de Burgh-Day Catherine O.ORCID, Leeuwenburg Tennessee
Abstract
Abstract. Machine learning (ML) is increasing in popularity in the field of weather and climate modelling. Applications range from improved solvers and preconditioners, to parameterization scheme emulation and replacement, and more recently even to full ML-based weather and climate prediction models. While ML has been used in this space for more than 25 years, it is only in the last 10 or so years that progress has accelerated to the point that ML applications are becoming competitive with numerical knowledge-based alternatives. In this review, we provide a roughly chronological summary of the application of ML to aspects of weather and climate modelling from early publications through to the latest progress at the time of writing. We also provide an overview of key ML terms, methodologies, and ethical considerations. Finally, we discuss some potentially beneficial future research directions. Our aim is to provide a primer for researchers and model developers to rapidly familiarize and update themselves with the world of ML in the context of weather and climate models.
Publisher
Copernicus GmbH
Reference174 articles.
1. Ackmann, J., Düben, P. D., Palmer, T. N., and Smolarkiewicz, P. K.: Machine-learned preconditioners for linear solvers in geophysical fluid flows, arXiv [preprint], https://doi.org/10.48550/arXiv.2010.02866, 6 October 2020. 2. Adams, S. V., Ford, R. W., Hambley, M., Hobson, J. M., Kavčič, I., Maynard, C. M., Melvin, T., Müller, E. H., Mullerworth, S., Porter, A. R. Rezny, M., Shipway, B. J., and Wong, R.: LFRic: Meeting the challenges of scalability and performance portability in Weather and Climate models, J. Parallel. Distr. Com., 132, 383–396, https://doi.org/10.1016/j.jpdc.2019.02.007, 2019. 3. Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, C., and Gentine, P.: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence, Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, 2017. 4. Arcomano, T., Szunyogh, I., Wikner, A., Pathak, J., Hunt, B. R., and Ott, E.: A Hybrid Approach to Atmospheric Modeling That Combines Machine Learning With a Physics-Based Numerical Model, J. Adv. Model. Earth Sy., 14, e2021MS002712, https://doi.org/10.1029/2021MS002712, 2022.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|