Assessing the impact of climate change on landslides near Vejle, Denmark, using public data

Author:

Svennevig KristianORCID,Koch JulianORCID,Keiding Marie,Luetzenburg GregorORCID

Abstract

Abstract. The possibility of increased landslide activity as a result of climate change has often been suggested, but few studies quantify this connection. Here, we present and utilize a workflow for the first time solely using publicly available data to assess the impact of future changes in landslide dynamic conditioning factors on landslide movement. In our case we apply the workflow to three slow-moving coastal landslides near Vejle, presenting the first study of its kind on Danish landslides. We examine modelled water table depth (WTD) as a dynamic conditioning factor using the DK-HIP model (Danish Hydrological Information and Prognosis system) that simulates historic and future WTD. The data show a clear correlation with landslide movement as recorded by the interferometric synthetic aperture radar (InSAR) time series for the period from 2015 to 2019. Movement of up to 84 mm yr−1 occurs during wet winter months when normalized WTD exceeds +0.5 m. During dry winters, no, or very little, seasonal landslide movement is observed. The DK-HIP model predicts an increase of up to 0.7 m in WTD at the study area by 2100 CE under the RCP8.5 (Representative Concentration Pathway) scenario (95 % confidence), which exceeds the levels this area has experienced in recent decades (mean increase of 0.2 m with a standard deviation of 0.25 m). This is likely to result in increased landslide activity and acceleration of movement. In a previous episode of increased landslide activity linked to extreme precipitation in the early 1980s, one of the examined landslides accelerated, causing damage to infrastructure and buildings. Our study clearly shows that these landslides are sensitive to climate change and highlights the potential of utilizing high-quality, publicly available data to address these complex scientific questions. The quality and quantity of such data are ever increasing, and so is the potential of this kind of approach.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3