The role of citizen science in assessing the spatiotemporal pattern of rainfall events in urban areas: a case study in the city of Genoa, Italy

Author:

Loglisci Nicola,Boni GiorgioORCID,Cauteruccio AriannaORCID,Faccini FrancescoORCID,Milelli Massimo,Paliaga GuidoORCID,Parodi Antonio

Abstract

Abstract. Climate change in the Mediterranean region is manifesting itself as an increase in average air temperature and a change in the rainfall regime: the value of cumulative annual rainfall generally appears to be constant, but the intensity of annual rainfall maxima, between 1 and 24 h, is increasing, especially in the period between late summer and early autumn. The associated ground effects in urban areas consist of flash floods and pluvial floods, often in very small areas, depending on the physical-geographical layout of the region. In the context of global warming, it is therefore important to have an adequate monitoring network for rain events that are highly concentrated in space and time. This research analyses the meteo-hydrological features of the 27 and 28 August 2023 event that occurred in the city of Genoa, Italy, just 4 d after the record maximum air temperature was recorded: between 19:00 and 02:00 UTC almost 400 mm of rainfall was recorded in the eastern sector of the historic centre of Genoa, with significant ground effects such as flooding episodes and the overflowing of pressurised culverts. Rainfall observations and estimates were made using both official or “authoritative” networks (rain gauges and meteorological radar) and rain gauge networks inspired by citizen science principles. The combined analysis of observations from authoritative and citizen science networks reveals, for the event analysed, a spatial variability of the precipitation field at an hourly and a sub-hourly timescale that cannot be captured by the current spatial density of the authoritative measurement stations (which have one of the highest densities in Italy). Monthly total rainfall and short-duration annual maximum time series recorded by the authoritative rain gauge network of the Genoa area are then analysed. The results show significant variation even at distances of less than 2 km in the average rainfall depth accumulated over sub-hourly duration. Extreme weather monitoring activity is confirmed as one of the most important aspects in terms of flood prevention and protection in urban areas. The integration between authoritative and citizen science networks can prove to be a valid contribution to the monitoring of extreme events.

Funder

H2020 Environment

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3