Rainfall intensity–duration thresholds for bedload transport initiation in small Alpine watersheds

Author:

Badoux A.,Turowski J. M.,Mao L.,Mathys N.,Rickenmann D.

Abstract

Abstract. Although channel discharge represents one of the primary controls of bedload transport rates in mountain streams, it is rarely measured in small, steep catchments. Thus, it is often impossible to use it as a predictor of hazardous bedload events. In this study, the characteristics of rainfall events leading to bedload transport were investigated in five small Alpine catchments located in different geographical and morphological regions of Switzerland, Italy and France. Using rainfall data at high temporal resolution, a total of 370 rainfall events were identified that led to abundant sediment transport in the different catchments, and corresponding threshold lines were defined using a power law in intensity–duration space. Even though considerable differences in the distribution of the rainfall data were identified between catchments located in various regions, the determined threshold lines show rather similar characteristics. Such threshold lines indicate critical conditions for bedload transport initiation, but rainfall events that do not cause transport activity (so called no-bedload events) can still plot above them. With 0.67 overall in the Erlenbach (Swiss Prealps) and 0.90 for long-duration, low-intensity rainfall, the false alarm rate is considerable. However, for short-duration, high-intensity events, it is substantially smaller (0.33) and comparable to values determined in previous studies on the triggering of Alpine debris flows. Our results support the applicability of a traditional, generalized threshold for prediction or warning purposes during high-intensity rainfall. Such (often convective) rainfall events are unfortunately (i) difficult to measure, even by dense rain gauge networks, and (ii) difficult to accurately predict, both due to their small spatial and temporal scales. Still, for the protection of human life (e.g. along transportation infrastructure such as roads and railway) automated alerts based on power law threshold lines may be useful.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3