Atmospheric chemistry, sources and sinks of carbon suboxide, C<sub>3</sub>O<sub>2</sub>

Author:

Keßel Stephan,Cabrera-Perez David,Horowitz Abraham,Veres Patrick R.ORCID,Sander RolfORCID,Taraborrelli DomenicoORCID,Tucceri Maria,Crowley John N.ORCID,Pozzer AndreaORCID,Stönner ChristofORCID,Vereecken LucORCID,Lelieveld JosORCID,Williams Jonathan

Abstract

Abstract. Carbon suboxide, O  =  C  =  C  =  C  =  O, has been detected in ambient air samples and has the potential to be a noxious pollutant and oxidant precursor; however, its lifetime and fate in the atmosphere are largely unknown. In this work, we collect an extensive set of studies on the atmospheric chemistry of C3O2. Rate coefficients for the reactions of C3O2 with OH radicals and ozone were determined as kOH =  (2.6 ± 0.5)  ×  10−12 cm3 molecule−1 s−1 at 295 K (independent of pressure between  ∼  25 and 1000 mbar) and kO3  <  1.5  ×  10−21 cm3 molecule−1 s−1 at 295 K. A theoretical study on the mechanisms of these reactions indicates that the sole products are CO and CO2, as observed experimentally. The UV absorption spectrum and the interaction of C3O2 with water (Henry's law solubility and hydrolysis rate constant) were also investigated, enabling its photodissociation lifetime and hydrolysis rates, respectively, to be assessed. The role of C3O2 in the atmosphere was examined using in situ measurements, an analysis of the atmospheric sources and sinks and simulation with the EMAC atmospheric chemistry–general circulation model. The results indicate sub-pptv levels at the Earth's surface, up to about 10 pptv in regions with relatively strong sources, e.g. influenced by biomass burning, and a mean lifetime of  ∼  3.2 days. These predictions carry considerable uncertainty, as more measurement data are needed to determine ambient concentrations and constrain the source strengths.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3