Saturated CO<sub>2</sub> inhibits microbial processes in CO<sub>2</sub>-vented deep-sea sediments
-
Published:2013-08-26
Issue:8
Volume:10
Page:5639-5649
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
de Beer D.ORCID, Haeckel M., Neumann J., Wegener G., Inagaki F.ORCID, Boetius A.ORCID
Abstract
Abstract. This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan). The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulfate reduction (SR) and anaerobic methane oxidation (AOM). Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed emanating from the sediments, and the pH reached approximately 4.5 in a sediment depth > 6 cm, as determined in situ by microsensors. Methane and sulfate co-occurred in most sediment samples from the vicinity of the vents down to a depth of 3 m. However, SR and AOM were restricted to the upper 7–15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulfate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000–1700 mM), which disrupt the cellular pH homeostasis, and lead to end-product inhibition. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference33 articles.
1. Biddle, J. F., Cardman, Z., Mendlovitz, H., Albert, D. B., Lloyd, K. G., Boetius, A., and Teske, A.: Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments, ISME J., 6, 1018–1031, 2011. 2. de Beer, D., Schramm, A., Santegoeds, C. M., and Kühl, M.: A nitrite microsensor for profiling environmental biofilms, Appl. Environ. Microbiol., 63, 973–977, 1997. 3. Duan, Z. and Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chem. Geol., 193, 257–271, 2003. 4. Duan, Z., Sun, R., Zhu, C., and Chou, I.-M.: An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42-, Mar. Chem., 98, 131–139, 2006. 5. Duan, Z., Hu, J., Li, D., and Mao, S.: Densities of the CO2-H2O and CO2-H2O-NaCl systems up to 647 K and 100 MPa, Energ. Fuel., 22, 1666–1674, 2008.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|