Estimating geostatistical parameters and spatially-variable hydraulic conductivity within a catchment system using an ensemble smoother

Author:

Bailey R. T.,Baù D.

Abstract

Abstract. Groundwater flow models are important tools in assessing baseline conditions and investigating management alternatives in groundwater systems. The usefulness of these models, however, is often hindered by insufficient knowledge regarding the magnitude and spatial distribution of the spatially-distributed parameters, such as hydraulic conductivity (K), that govern the response of these models. Proposed parameter estimation methods frequently are demonstrated using simplified aquifer representations, when in reality the groundwater regime in a given watershed is influenced by strongly-coupled surface-subsurface processes. Furthermore, parameter estimation methodologies that rely on a geostatistical structure of K often assume the parameter values of the geostatistical model as known or estimate these values from limited data. In this study, we investigate the use of a data assimilation algorithm, the Ensemble Smoother, to provide enhanced estimates of K within a catchment system using the fully-coupled, surface-subsurface flow model CATHY. Both water table elevation and streamflow data are assimilated to condition the spatial distribution of K. An iterative procedure using the ES update routine, in which geostatistical parameter values defining the true spatial structure of K are identified, is also presented. In this procedure, parameter values are inferred from the updated ensemble of K fields and used in the subsequent iteration to generate the K ensemble, with the process proceeding until parameter values are converged upon. The parameter estimation scheme is demonstrated via a synthetic three-dimensional tilted v-shaped catchment system incorporating stream flow and variably-saturated subsurface flow, with spatio-temporal variability in forcing terms. Results indicate that the method is successful in providing improved estimates of the K field, and that the iterative scheme can be used to identify the geostatistical parameter values of the aquifer system. In general, water table data have a much greater ability than streamflow data to condition K. Future research includes applying the methodology to an actual regional study site.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3