Storylines of summer Arctic climate change constrained by Barents–Kara seas and Arctic tropospheric warming for climate risk assessment

Author:

Levine Xavier J.ORCID,Williams Ryan S.,Marshall Gareth,Orr Andrew,Seland Graff LiseORCID,Handorf DörtheORCID,Karpechko Alexey,Köhler RaphaelORCID,Wijngaard René R.ORCID,Johnston Nadine,Lee HannaORCID,Nieradzik LarsORCID,Mooney Priscilla A.ORCID

Abstract

Abstract. While climate models broadly agree on the changes expected to occur over the Arctic with global warming on a pan-Arctic scale (i.e. polar amplification, sea ice loss, and increased precipitation), the magnitude and patterns of these changes at regional and local scales remain uncertain. This limits the usability of climate model projections for risk assessments and their impact on human activities or ecosystems (e.g. fires and permafrost thawing). Whereas any single or ensemble mean projection may be of limited use to stakeholders, recent studies have shown the value of the storyline approach in providing a comprehensive and tractable set of climate projections that can be used to evaluate changes in environmental or societal risks associated with global warming. Here, we apply the storyline approach to a large ensemble of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models with the aim of distilling the wide spread in model predictions into four physically plausible outcomes of Arctic summertime climate change. This is made possible by leveraging strong covariability in the climate system associated with well-known but poorly constrained teleconnections and local processes; specifically, we find that differences in Barents–Kara sea warming and lower-tropospheric warming over polar regions among CMIP6 models explain most of the inter-model variability in pan-Arctic surface summer climate response to global warming. Based on this novel finding, we compare regional disparities in climate change across the four storylines. Our storyline analysis highlights the fact that for a given amount of global warming, certain climate risks can be intensified, while others may be lessened, relative to a “middle-of-the-road” ensemble mean projection. We find this to be particularly relevant when comparing climate change over terrestrial and marine areas of the Arctic which can show substantial differences in their sensitivity to global warming. We conclude by discussing the potential implications of our findings for modelling climate change impacts on ecosystems and human activities.

Funder

H2020 Environment

Publisher

Copernicus GmbH

Reference56 articles.

1. Anisimov, O. A. and Nelson, F. E.: Permafrost zonation and climate change in the Northern Hemisphere: results from transient general circulation models, Climatic Change, 35, 241–258, 1997.

2. Arias, P. A., Bellouin, N., Coppola, E., Jones, R. G., Krinner, G., Marotzke, J., Naik, V., Palmer, M. D., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P. W., Trewin, B., Achuta Rao, K., Adhikary, B., Allan, R. P., Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J. G., Cassou, C., Cherchi, A., Collins, W., Collins, W. D., Connors, S. L., Corti, S., Cruz, F., Dentener, F. J., Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes, F. J., Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E., Forster, P., Fox-Kemper, B., Fuglestvedt, J. S., Fyfe, J. C., Gillett, N. P., Goldfarb, L., Gorodetskaya, I., Gutierrez, J. M., Hamdi, R., Hawkins, E., Hewitt, H. T., Hope, P., Islam, A. S., Jones, C., Kaufman, D. S., Kopp, R. E., Kosaka, Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock, T. K., Meinshausen, M., Min, S.-K., Monteiro, P. M. S., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A., Raghavan, K., Ranasinghe, R., Ruane, A. C., Ruiz, L., Sallée, J.-B., Samset, B. H., Sathyendranath, S., Seneviratne, S. I., Sörensson, A. A., Szopa, S., Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vautard, R., von Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld, K.: Technical Summary, in: Climate Change: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 33−-144, https://doi.org/10.1017/9781009157896.002, 2021.

3. Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean primary production, Prog. Oceanogr., 136, 60–70, 2015.

4. Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Y., Labba, N., Radionov, V., Barry, R. G., Bulygina, O. N., Essery, R. L., Frolov, D. M., and Golubev, V. N.: The changing face of Arctic snow cover: A synthesis of observed and projected changes, Ambio, 40, 17–31, 2011.

5. Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G., and Westermann, S.: An observation-based constraint on permafrost loss as a function of global warming, Nat. Clim. Change, 7, 340–344, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3