In-depth characterization of submicron particulate matter inter-annual variations at a street canyon site in northern Europe
-
Published:2021-04-26
Issue:8
Volume:21
Page:6297-6314
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Barreira Luis M. F., Helin Aku, Aurela MinnaORCID, Teinilä Kimmo, Friman MillaORCID, Kangas Leena, Niemi Jarkko V., Portin Harri, Kousa Anu, Pirjola Liisa, Rönkkö Topi, Saarikoski Sanna, Timonen HilkkaORCID
Abstract
Abstract. Atmospheric aerosols play an important role in air pollution. Aerosol particle chemical composition is highly variable depending on the season, hour
of the day, day of the week, meteorology, and location of the measurement site. Long measurement periods and highly time-resolved data are
required in order to achieve a statistically relevant amount of data for assessing those variations and evaluating pollution episodes. In this study, we
present continuous atmospheric PM1 (particulate matter < 1 µm) concentration and composition measurements at an urban
street canyon site located in Helsinki, Finland. The study was performed for 4.5 years (2015–2019) and involved highly time-resolved
measurements by taking advantage of a suite of online state-of-the-art instruments such as an aerosol chemical speciation monitor (ACSM), a multi-angle
absorption photometer (MAAP), a differential mobility particle sizer (DMPS), and an Aethalometer (AE). PM1 consisted mostly of organics, with
mean mass concentrations of 2.89 µg m−3 (53 % of PM1) followed by inorganic species (1.56 µg m−3,
29 %) and equivalent black carbon (eBC, 0.97 µg m−3, 18 %). A trend analysis revealed a decrease in BC from fossil fuel
(BCFF), organics, and nitrate over the studied years. Clear seasonal and/or diurnal variations were found for the measured atmospheric
PM1 constituents. Particle number and mass size distributions over different seasons revealed the possible influence of secondary organic
aerosols (SOAs) during summer and the dominance of ultrafine traffic aerosols during winter. The seasonality of measured constituents also impacted the particle's coating and absorptive properties. The investigation of pollution episodes observed at the site showed that a large fraction of
aerosol particle mass was comprised of inorganic species during long-range transport, while during local episodes eBC and organics prevailed
together with elevated particle number concentration. Overall, the results increased knowledge of the variability of PM1 concentration and
composition in a Nordic traffic site and its implications on urban air quality. Considering the effects of PM mitigation policies in northern
Europe in the last decades, the results obtained in this study may be considered illustrative of probable future air quality challenges in
countries currently adopting similar environmental regulations.
Funder
Business Finland Academy of Finland
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference92 articles.
1. Al-Dabbous, A. N. and Kumar, P.:
Source apportionment of airborne nanoparticles in a Middle Eastern city using positive matrix factorization,
Environ. Sci.-Proc. Imp.,
17, 802–812, https://doi.org/10.1039/C5EM00027K, 2015. 2. Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L., Middlebrook,
A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.:
A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data,
J. Aerosol Sci.,
35, 909–922, https://doi.org/10.1016/j.jaerosci.2004.02.007, 2004. 3. Anttila, P. and Tuovinen, J.-P.:
Trends of primary and secondary pollutant concentrations in Finland in 1994–2007,
Atmos. Environ.,
44, 30–41, https://doi.org/10.1016/j.atmosenv.2009.09.041, 2010. 4. Aurela, M., Saarikoski, S., Niemi, J. V., Canonaco, F., Prevot, A. S. H., Frey, A., Carbone, S.,
Kousa, A., and Hillamo, R.:
Chemical and Source Characterization of Submicron Particles at Residential and Traffic Sites in the Helsinki Metropolitan Area, Finland,
Aerosol Air Qual. Res.,
15, 1213–1226, https://doi.org/10.4209/aaqr.2014.11.0279, 2015. 5. Barone, T. L. and Zhu, Y.:
The morphology of ultrafine particles on and near major freeways,
Atmos. Environ.,
42, 6749–6758, https://doi.org/10.1016/j.atmosenv.2008.05.019, 2008.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|