Small-scale hydrological patterns in a Siberian permafrost ecosystem affected by drainage
-
Published:2024-05-28
Issue:10
Volume:21
Page:2571-2597
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Raab Sandra, Castro-Morales KarelORCID, Hildebrandt AnkeORCID, Heimann MartinORCID, Vonk Jorien Elisabeth, Zimov Nikita, Goeckede MathiasORCID
Abstract
Abstract. Climate warming and associated accelerated permafrost thaw in the Arctic lead to a shift in landscape patterns, hydrologic conditions, and release of carbon. In this context, the lateral transport of carbon and shifts therein following thaw remain poorly understood. Crucial hydrologic factors affecting the lateral distribution of carbon include the depth of the saturated zone above the permafrost table with respect to changes in water table and thaw depth and the connectivity of water-saturated zones. Landscape conditions are expected to change in the future due to rising temperatures and polygonal or flat floodplain Arctic tundra areas in various states of degradation; hydrologic conditions will also change. This study is focused on an experimental site near Chersky, northeast Siberia, where a drainage ditch was constructed in 2004 to simulate landscape degradation features that result in drier soil conditions and channeled water flow. We compared water levels and thaw depths in the drained area (dry soil conditions) with those in an adjacent control area (wet soil conditions). We also identified the sources of water at the site via stable water isotope analysis. We found substantial spatiotemporal changes in the water conditions at the drained site: (i) lower water tables resulting in drier soil conditions, (ii) quicker water flow through drier areas, (iii) larger saturation zones in wetter areas, and (iv) a higher proportion of permafrost meltwater in the liquid phase towards the end of the growing season. These findings suggest decreased lateral connectivity throughout the drained area. Shifts in hydraulic connectivity in combination with a shift in vegetation abundance and water sources may impact carbon sources and sinks as well as transport pathways. Identifying lateral transport patterns in areas with degrading permafrost is therefore crucial.
Funder
Horizon 2020 Framework Programme H2020 European Research Council
Publisher
Copernicus GmbH
Reference91 articles.
1. Ala-aho, P., Soulsby, C., Pokrovsky, O. S., Kirpotin, S. N., Karlsson, J., Serikova, S., Vorobyev, S. N., Manasypov, R. M., Loiko, S., and Tetzlaff, D.: Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape, J. Hydrol., 556, 279–293, https://doi.org/10.1016/j.jhydrol.2017.11.024, 2018. 2. AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, xiv + 269 pp., ISBN 978-82-7971-101-8, 2017. 3. Arnold, C. L. and Ghezzehei, T. A.: A method for characterizing desiccation-induced consolidation and permeability loss of organic soils, Water Resour. Res., 51, 775–786, https://doi.org/10.1002/2014WR015745, 2015. 4. Bastviken, D., Cole, J. J., Pace, M. L., and Van De Bogert, M. C.: Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions: Fates of lake methane, J. Geophys. Res.-Biogeo., 113, 1–13, https://doi.org/10.1029/2007JG000608, 2008. 5. Boelter, D. H.: Physical Properties of Peats as Related to Degree of Decomposition, Soil Sci. Soc. Am. J., 33, 606–609, https://doi.org/10.2136/sssaj1969.03615995003300040033x, 1969.
|
|