Quantification and mitigation of bottom-trawling impacts on sedimentary organic carbon stocks in the North Sea

Author:

Porz LucasORCID,Zhang WenyanORCID,Christiansen Nils,Kossack Jan,Daewel Ute,Schrum Corinna

Abstract

Abstract. The depletion of sedimentary organic carbon stocks by the use of bottom-contacting fishing gear and the potential climate impacts resulting from remineralization of the organic carbon to CO2 have recently been heavily debated. An issue that has remained unaddressed thus far regards the fate of organic carbon resuspended into the water column following disturbance by fishing gear. To resolve this, a 3D-coupled numerical ocean sediment macrobenthos model is used in this study to quantify the impacts of bottom trawling on organic carbon and macrobenthos stocks in North Sea sediments. Using available information on vessel activity, gear components, and sediment type, we generate daily time series of trawling impacts and simulate 6 years of trawling activity in the model, as well as four management scenarios in which trawling effort is redistributed from areas inside to areas outside of trawling closure zones. North Sea sediments contained 552.2±192.4 kt less organic carbon and 13.6±2.6 % less macrobenthos biomass in the trawled simulations than in the untrawled simulations by the end of each year. The organic carbon loss is equivalent to aqueous emissions of 2.0±0.7 Mt CO2 each year, roughly half of which is likely to accumulate in the atmosphere on multi-decadal timescales. The impacts were elevated in years with higher levels of trawling pressure and vice versa. Results showed high spatial variability, with a high loss of organic carbon due to trawling in some areas, while organic carbon content increased in nearby untrawled areas following transport and redeposition. The area most strongly impacted was the heavily trawled and carbon-rich Skagerrak. Simulated trawling closures in planned offshore wind farms (OWFs) and outside of core fishing grounds (CFGs) had negligible effects on net sedimentary organic carbon, while closures in marine protected areas (MPAs) had a moderately positive impact. The largest positive impact arose for trawling closures in carbon protection zones (CPZs), which were defined as areas where organic carbon is both plentiful and labile and thereby most vulnerable to disturbance. In that scenario, the net impacts of trawling on organic carbon and macrobenthos biomass were reduced by 29 % and 54 %, respectively. These results demonstrate that carbon protection and habitat protection can be combined without requiring a reduction in net fishing effort.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Reference96 articles.

1. Akhtar, N., Geyer, B., and Schrum, C.: Impacts of accelerating deployment of offshore windfarms on near-surface climate, Sci. Rep.-UK, 12, 18307, https://doi.org/10.1038/s41598-022-22868-9, 2022.

2. Amoroso, R. O., Pitcher, C. R., Rijnsdorp, A. D., McConnaughey, R. A., Parma, A. M., Suuronen, P., Eigaard, O. R., Bastardie, F., Hintzen, N. T., Althaus, F., Baird, S. J., Black, J., Buhl-Mortensen, L., Campbell, A. B., Catarino, R., Collie, J., Cowan, J. H., Durholtz, D., Engstrom, N., Fairweather, T. P., Fock, H. O., Ford, R., Gálvez, P. A., Gerritsen, H., Góngora, M. E., González, J. A., Hiddink, J. G., Hughes, K. M., Intelmann, S. S., Jenkins, C., Jonsson, P., Kainge, P., Kangas, M., Kathena, J. N., Kavadas, S., Leslie, R. W., Lewis, S. G., Lundy, M., Makin, D., Martin, J., Mazor, T., Gonzalez-Mirelis, G., Newman, S. J., Papadopoulou, N., Posen, P. E., Rochester, W., Russo, T., Sala, A., Semmens, J. M., Silva, C., Tsolos, A., Vanelslander, B., Wakefield, C. B., Wood, B. A., Hilborn, R., Kaiser, M. J., and Jennings, S.: Bottom trawl fishing footprints on the world's continental shelves, P. Natl. Acad. Sci. USA, 115, E10275, https://doi.org/10.1073/pnas.1802379115, 2018.

3. Arlinghaus, P., Zhang, W., and Schrum, C.: Small-scale benthic faunal activities may lead to large-scale morphological change- A model based assessment, Front. Mar. Sci., 9, 1011760, https://doi.org/10.3389/fmars.2022.1011760, 2022.

4. Atwood, T. B., Romanou, A., DeVries, T., Lerner, P. E., Mayorga, J. S., Bradley, D., Cabral, R. B., Schmidt, G. A., and Sala, E.: Atmospheric CO2 emissions and ocean acidification from bottom-trawling, Front. Mar. Sci., 10, 1125137, https://doi.org/10.3389/fmars.2023.1125137, 2024.

5. Beaulieu, S.: Accumulation and Fate of Phytodetritus on the Sea Floor, in: Oceanography and Marine Biology: An Annual Review, Volume 40, edited by: Gibson, R., Barnes, M., an Atkinson, R., CRC Press, London, 171–232, https://doi.org/10.1201/9780203180594-15, 2002.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3