Seasonal cycles of surface layer salinity in the Pacific Ocean

Author:

Bingham F. M.,Foltz G. R.,McPhaden M. J.

Abstract

Abstract. The seasonal variability of surface layer salinity (SLS) is examined in the Pacific Ocean between 40° S and 60° N using a variety of data sources. Significant seasonal cycles were found in 5 regions: 1) The western North Pacific, 2) The northeastern North Pacific and Alaska gyre, 3) the intertropical convergence zone (ITCZ), 4) an area of the central North Pacific north of the Hawaiian Islands, 5) the central South Pacific along 10–20° S. Amplitudes range from 0.1 to > 0.5. The largest amplitudes are in the tropical band and the western North Pacific. Maximum salinity is obtained in late (northern) winter in the western North Pacific, late winter and early spring in the northeastern North Pacific, early summer in the ITCZ area, late summer and early fall in the central North Pacific area and (austral) winter in the central South Pacific. Large areas of the Pacific have no significant seasonal variation in SLS. Seasonal variability of evaporation rate, precipitation rate and the difference between them (E-P) were calculated from the OAFlux and Global Precipitation Climatology Project datasets. Typical amplitudes of E-P are 0.1–1 × 10−4 kg m−2 s−1. The seasonal variability of E-P is largely dominated by variability in evaporation in the western North Pacific and precipitation elsewhere. The largest amplitudes are in areas along the edge of the western North Pacific and in the far eastern tropical Pacific around 10° N. Phases in these areas indicate maximum E-P in mid- to late winter in these areas of large amplitude. The closest correspondence between E-P and SLS is in the ITCZ. E-P was combined with seasonal variation of the mixed-layer depth to calculate the freshwater flux forcing term of the SLS balance equation. The term was found to be similar in magnitude and distribution to E-P. Some other terms of the SLS balance were calculated. Horizontal advection was found to have seasonal cycles in a region near the equator. Entrainment was found to be mostly not significant except for a small region along 2.5–7.5° N in the eastern Pacific. Averaged spatially over large areas in the western North Pacific, ITCZ, South Pacific and northern North Pacific, the seasonal cycle is mostly a balance between changes in SLS and E-P, with entrainment and advection playing relatively minor roles. This work highlights the potentially significant role of surface salinity in the hydrologic cycle and in subtropical mode water formation. It can also help to interpret measurements that will soon be available from the Aquarius and SMOS (Soil Moisture and Ocean Salinity) satellite missions.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference44 articles.

1. Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, R., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, A., and Nelkin, E.: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeor., 4, 1147–1167, 2003.

2. Ando, K. and McPhaden, M. J.: Variability of surface layer hydrography in the tropical Pacific Ocean, J. Geophys. Res., 102, 23063–23078, 1997.

3. Antonov, J., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., and Garcia, H. E.: World Ocean Atlas 2009, Volume 2: Salinity, NOAA NESDIS Report 69, 184 pp., 2010.

4. Berger, M., Camps, A., Font, J., Kerr, Y., Miller, J., Johannssen, J., Boutin, J., Drinkwater, M. R., Skou, N., Floury, N., Rast, M., Rebhan, H., and Attema, E.: Measuring Ocean Salinity with ESA's SMOS Mission, ESA Bull., 111, 113–121, 2002.

5. Bingham, F.: The Formation and Spreading of Subtropical Mode Water in the North Pacific, J. Geophys. Res., 97, 11177–11189, 1992.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3