Biomass estimation to support pasture management in Niger

Author:

Schucknecht A.,Meroni M.,Kayitakire F.,Rembold F.,Boureima A.

Abstract

Abstract. Livestock plays a central economic role in Niger, but it is highly vulnerable due to the high inter-annual variability of rain and hence pasture production. This study aims to develop an approach for mapping pasture biomass production to support activities of the Niger Ministry of Livestock for effective pasture management. Our approach utilises the observed spatiotemporal variability of biomass production to build a predictive model based on ground and remote sensing data for the period 1998–2012. Measured biomass (63 sites) at the end of the growing season was used for the model parameterisation. The seasonal cumulative Fraction of Absorbed Photosynthetically Active Radiation (CFAPAR), calculated from 10-day image composites of SPOT-VEGETATION FAPAR, was computed as a phenology-tuned proxy of biomass production. A linear regression model was tested aggregating field data at different levels (global, department, agro-ecological zone, and intersection of agro-ecological and department units) and subjected to a cross validation (cv) by leaving one full year out. An increased complexity (i.e. spatial detail) of the model increased the estimation performances indicating the potential relevance of additional and spatially heterogeneous agro-ecological characteristics for the relationship between herbaceous biomass at the end of the season and CFAPAR. The model using the department aggregation yielded the best trade-off between model complexity and predictive power (R2 = 0.55, R2cv = 0.48). The proposed approach can be used to timely produce maps of estimated biomass at the end of the growing season before ground point measurements are made available.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3