Cold wintertime air masses over Europe: where do they come from and how do they form?

Author:

Nygård TiinaORCID,Papritz LukasORCID,Naakka TuomasORCID,Vihma TimoORCID

Abstract

Abstract. Despite the general warming trend, wintertime cold-air outbreaks in Europe have remained nearly as extreme and as common as decades ago. In this study, we identify six principal 850 hPa cold anomaly types over Europe in 1979–2020 using self-organizing maps (SOMs). Based on extensive analysis of atmospheric large-scale circulation patterns combined with nearly 2 million kinematic backward trajectories, we show the origins and contributions of various physical processes to the formation of cold wintertime 850 hPa air masses. The location of the cold anomaly region is closely tied to the location of blocking; if the block is located farther to the east, the cold anomaly is also displaced eastwards. Considering air mass evolution along the trajectories, the air parcels are typically initially (5–10 d before) colder than at their arrival in Europe, but initially warmer air parcels also sometimes lead to cold anomalies over Europe. Most commonly the effect of adiabatic warming on the temperature anomalies is overcompensated for by advection from regions that are climatologically colder than the target region, supported by diabatic cooling along the pathway. However, there are regional differences: cold anomalies over western Europe and southeastern Europe are dominantly caused by advection and over eastern Europe by both advective and diabatic processes. The decadal-scale warming in the site of air mass origin has been partly compensated for by enhanced diabatic (radiative) cooling along the pathway to Europe. There have also been decadal changes in large-scale circulation patterns and air mass origin. Our results suggest that understanding future changes in cold extremes will require in-depth analyses of both large-scale circulation and the physical (adiabatic and diabatic) processes.

Funder

Academy of Finland

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3