Coring tools have an effect on lithification and physical properties of marine carbonate sediments

Author:

De Vleeschouwer DavidORCID,Nohl TheresaORCID,Schulbert Christian,Bialik Or M.ORCID,Auer GeraldORCID

Abstract

Abstract. The International Ocean Discovery Program (IODP) JOIDES Resolution Science Operator typically uses an advanced piston corer (APC) in soft ooze and sediments and an extended core barrel (XCB) in firm sediments. The coring tool exchange typically occurs around the same depth in adjacent holes of the same site. However, during IODP Expedition 356, the coring tool switch occurred at different depths: IODP Sites U1463 and U1464 are marked by a stratigraphic interval (> 25 m thick) that was XCB cored in one hole and APC cored in other holes. Shipboard scientists remarked that APC-cored sediments were unlithified or partially lithified, while XCB-cored sediments were fully lithified. This difference in sedimentological description of the same formation seems to be an effect of coring technique. To provide further insight, we assessed the physical properties (bulk density, porosity, and P-wave velocity), downhole wireline logging data, scanning electron microscope (SEM) images, and micro-computed tomography (µCT) scans of those intervals. We find systematic differences between the different coring techniques. XCB cores are characterized by systematically lower bulk density, higher porosity, and higher P-wave velocity than APC cores. Downhole logging data suggest that the original P-wave velocity of the formation is better preserved in XCB cores, despite the typical “biscuit-and-gravy” core disturbance (i.e. well-preserved core fragments surrounded by squelched core material). In conjunction with SEM and µCT images, we conclude that the APC tool destroyed early lithification by breaking cements between individual grains. Moreover, µCT images reveal denser packing and smaller pore volumes in the APC cores. These sedimentary changes likely occur when the APC pressure wave passes through the sediment. The destruction of grain-to-grain cements provides an explanation for the significantly lower P-wave velocities in APC cores. Interestingly, the gravy sections in XCB drilled cores mimic the destruction of early lithification and reduction of pore volume. We conclude that APC remains the tool of choice for recovering soft sediments, especially for paleoclimate purposes. However, for the study of lithification, XCB biscuits provide a more representative image of the formation. For the study of early diagenesis, further studies are required to ascertain the preservation of key sedimentary features using existing and new drilling tools.

Publisher

Copernicus GmbH

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3