What do we know about how the terrestrial multicellular soil fauna reacts to microplastic?

Author:

Büks Frederick,Loes van Schaik Nicolette,Kaupenjohann Martin

Abstract

Abstract. The ubiquitous accumulation of microplastic (MP) particles across all global ecosystems accompanies their uptake into soil food webs. In this review, we analyzed studies on passive translocation, active ingestion, bioaccumulation and adverse effects within the phylogenetic tree of multicellular soil faunal life. The representativity of these studies for natural soil ecosystems was assessed using data on the type of plastic, the shape, the composition, the concentration and the time of exposure. Available studies cover a wide range of soil organisms, with emphasis on earthworms, nematodes, springtails, beetles and lugworms, each focused on well-known model organisms. Thus, about 58 % of the studies used inappropriate concentrations or units, whereas 42 % applied MP concentrations similar to amounts in slightly to very heavily polluted soils. In many cases, however, polystyrene microspheres were used, which represent a combination of plastic type and shape that is easily available but does not reflect the main plastic input into soil ecosystems. In turn, MP fibers are strongly underrepresented compared with their high abundance within contaminated soils. A few studies also examined the comminution of macroplastic by the soil fauna. Further properties of plastic such as aging, coating and additives have been insufficiently documented. Despite these limitations, there is a recurring pattern of active intake followed by a population shift within the gut microbiome and adverse effects on motility, growth, metabolism, reproduction and mortality in various combinations, especially at high concentrations and small particle sizes. For the improvement of future studies, we identified the problems with past experiments, and we recommend that coming studies consider the type, shape, grade of aging, specific concentrations of MP fractions and long-term incubation in both natural and contaminated soils.

Publisher

Copernicus GmbH

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3